Publications by authors named "Luigi Cangemi"

Cerebrovascular and neurological diseases are characterized by neuroinflammation, which alters the neurovascular unit, whose interaction with the choroid plexus is critical for maintaining brain homeostasis and producing cerebrospinal fluid. Dysfunctions in such process can lead to conditions such as idiopathic normal pressure hydrocephalus, a common disease in older adults. Potential pharmacological treatments, based upon intranasal administration, are worthy of investigation because they might improve symptoms and avoid surgery by overcoming the blood-brain barrier and avoiding hepatic metabolism.

View Article and Find Full Text PDF

Poor prognosis in high-grade gliomas is mainly due to fatal relapse after surgical resection in the absence of efficient chemotherapy, which is severely hampered by the blood-brain barrier. However, the leaky blood-brain-tumour barrier forms upon tumour growth and vascularization, allowing targeted nanocarrier-mediated drug delivery. The homotypic targeting ability of cell-membrane fragments obtained from cancer cells means that these fragments can be exploited to this aim.

View Article and Find Full Text PDF

Bone is a site of distant metastases, which are a common cause of morbidity and mortality with a high socio-economic impact, for many malignant tumours. In order to engineer pharmacological therapies that are suitable for this debilitating disease, this experimental work presents injectable lipid nanoemulsions, which are endowed with a long history of safe clinical usage in parenteral nutrition, their loading with vincristine and their grafting with alendronate, with a dual purpose: merging the anticancer activity of bisphosphonates and vincristine, and enhancing bone-targeted delivery. In cell studies, alendronate synergised with the anti-migration activity of vincristine, which is important as migration plays a key role in the metastatisation process.

View Article and Find Full Text PDF

Despite recent progressions in cancer genomic and immunotherapies, advanced melanoma still represents a life threat, pushing to optimise new targeted nanotechnology approaches for specific drug delivery to the tumour. To this aim, owing to their biocompatibility and favourable technological features, injectable lipid nanoemulsions were functionalised with proteins owing to two alternative approaches: transferrin was chemically grafted for active targeting, while cancer cell membrane fragments wrapping was used for homotypic targeting. In both cases, protein functionalisation was successfully achieved.

View Article and Find Full Text PDF

High-grade melanoma remains a major life-threatening illness despite the improvement in therapeutic control that has been achieved by means of targeted therapies and immunotherapies in recent years. This work presents a preclinical-level test of a multi-pronged approach that includes the loading of immunotherapeutic (ICOS-Fc), targeted (sorafenib), and chemotherapeutic (temozolomide) agents within Intralipid, which is a biocompatible nanoemulsion with a long history of safe clinical use for total parenteral nutrition. This drug combination has been shown to inhibit tumor growth and angiogenesis with the involvement of the immune system, and a key role is played by ICOS-Fc.

View Article and Find Full Text PDF

Resistance to chemotherapy is a major limiting factor that hamper the effectiveness of anticancer therapies. Doxorubicin is an antineoplastic agent used in the treatment of a wide range of cancers. However, it presents several limitations such as dose-dependent cardiotoxicity, lack of selectivity for tumor cells, and induced cell resistance.

View Article and Find Full Text PDF

Advanced melanoma is characterized by poor outcome. Despite the number of treatments having been increased over the last decade, current pharmacological strategies are only partially effective. Therefore, the improvement of the current systemic therapy is worthy of investigation.

View Article and Find Full Text PDF

Magnetic Oxygen-Loaded Nanobubbles (MOLNBs), manufactured by adding Superparamagnetic Iron Oxide Nanoparticles (SPIONs) on the surface of polymeric nanobubbles, are investigated as theranostic carriers for delivering oxygen and chemotherapy to brain tumors. Physicochemical and cyto-toxicological properties and in vitro internalization by human brain microvascular endothelial cells as well as the motion of MOLNBs in a static magnetic field were investigated. MOLNBs are safe oxygen-loaded vectors able to overcome the brain membranes and drivable through the Central Nervous System (CNS) to deliver their cargoes to specific sites of interest.

View Article and Find Full Text PDF

This work proposes a novel approach by which to consistently classify cysteine sites in proteins in terms of their reactivity toward dimethyl fumarate (DMF) and fumarate. Dimethyl fumarate-based drug products have been approved for use as oral treatments for psoriasis and relapsing-remitting multiple sclerosis. The adduction of DMF and its (re)active metabolites to certain cysteine residues in proteins is thought to underlie their effects.

View Article and Find Full Text PDF

Aim: To develop an innovative delivery system for temozolomide (TMZ) in solid lipid nanoparticles (SLN), which has been preliminarily investigated for the treatment of melanoma.

Materials And Methods: SLN-TMZ was obtained through fatty acid coacervation. Its pharmacological effects were assessed and compared with free TMZ in in vitro and in vivo models of melanoma and glioblastoma.

View Article and Find Full Text PDF

Redox adaptation plays an important role in cancer cells drug resistance. The antioxidant response is principally mediated by the transcription factor Nrf2, that induces the transcriptional activation of several genes involved in GSH synthesis, chemoresistance, and cytoprotection. YAP is emerging as a key mediator of chemoresistance in a variety of cancers, but its role in controlling the antioxidant status of the cells is yet elusive.

View Article and Find Full Text PDF

Androgenic-anabolic steroid (AAS) misuse has been associated with depression. It has been proposed that stress has a role in depression and that serotonin is involved in both endocrine responses to stress and depressive physiopathology. Although reports demonstrate that AAS chronic administration modifies components of stress-responsive hypothalamic-pituitary-adrenal axis (HPAA), no study has evaluated AAS effect on the response to stressful stimuli.

View Article and Find Full Text PDF

The forced swim test (FST) can lead to stress-related diseases such as depression, through activation of hypothalamic-pituitary-adrenal axis (HPAA) and corticosteroid disregulation. Among the proopiomelanocortin (POMC)-derived peptides, alpha-melanocyte-stimulating hormone (alpha-MSH) has been shown to regulate long-lasting behavioral responses. Moreover, serotonergic pathways in various brain areas are activated by stressors, a feature that suggests a role for serotonin in both stress-induced HPAA disregulation and depressive physiopathology.

View Article and Find Full Text PDF

The effect of amitriptyline on hypothalamic-pituitary-adrenocortical (HPA) axis activity was compared with that of fluvoxamine in 38 patients suffering from DMS-IV major depressive disorder. Basal plasma adrenocorticotropic hormone and cortisol levels were determined in the so-called "observation window" of an hour (08:00-09:00 h), and cortisol levels were determined again at 20:00 h. Clinical and biochemical assessments were performed before therapy (T0), at day 14 (T14), and at day 42 (T42) of the course of antidepressant treatment.

View Article and Find Full Text PDF