Bioremediation is widely recognized as a promising and efficient approach for the elimination of Cd from contaminated paddy soils. However, the Cd removal efficacy achieved through this method remains unsatisfactory and is accompanied by a marginally higher cost. Cysteine has the potential to improve the bioleaching efficiency of Cd from soils and decrease the use cost since it is green, acidic and has a high Cd affinity.
View Article and Find Full Text PDFReasonable construction of high activity and selectivity electrocatalysts is crucial to achieve efficient ethanol oxidation reaction (EOR). However, the oxidation of ethanol tends to produce CO species that poison the active centers of the EOR electrocatalysts. Herein, a unique amorphous CrO-protected defect-rich ultrafine Pd nanowires (CrO-Pd NWs) is developed.
View Article and Find Full Text PDFMicrobial communities as the most important and active component of soil play a crucial role in the geochemical cycling of toxic metal(loid)s in the Pb and Zn smelting site soils. However, the relationships between soil microbial communities and the fractions of toxic metal(loid)s and the succession of soil microbial community and functions after enrichment cultivation have rarely been analyzed. In this study, the diversity and composition of microbial communities in soils before and after enrichment cultivation were investigated by high-throughput sequencing.
View Article and Find Full Text PDFMicrobial scale-up cultivation is the first step to bioremediating cadmium (Cd)-contaminated soils at the industrial scale. However, the changes in the microbial community as the bioreactor volume expands and their associations with soil Cd removal remain unclear. Herein, a six-stage scale-up cultivation process of mixotrophic acidophiles was conducted, scaling from 0.
View Article and Find Full Text PDFDeveloping multi-functional electrocatalysts is of great practical significance for fuel cells and water splitting. Herein, Rh-RhO nanoclusters are prepared and the surface oxygen vacancy content is regulated elaborately by post-treatment. The optimized Rh-RhO/C-400 exhibits superior trifunctional catalytic activity for hydrogen oxidation reaction (HOR), hydrogen evolution reaction (HER) and hydrazine oxidation reaction (HzOR), i.
View Article and Find Full Text PDFArch Environ Contam Toxicol
January 2024
The mining and smelting site soils in South China present excessive Cd pollution. However, the transport behavior of Cd in the highly weathered acidic soil layer at the lead-zinc smelting site remains unclear. Here, under different conditions of simulated infiltration, the migration behavior of Cd in acid smelting site soils at different depths was examined.
View Article and Find Full Text PDFAt present, the pollution of arsenic (As) and lead (Pb) is becoming increasingly serious. The pollution caused by the release of As and Pb from lead-zinc mines has seriously affected the water and soil environment and threatened human health. It is necessary to reveal the release characteristics of As and Pb.
View Article and Find Full Text PDFPolybrominated diphenyl ethers (PBDEs) are widely used brominated flame retardants. PBDEs and their derivatives, hydroxylated PBDEs (OH-PBDEs), can bind to hormone receptors and impact hormone secretion, transportation, and metabolism, leading to endocrine disruption and the development of various diseases. They have particularly strong interference effects on thyroid hormones.
View Article and Find Full Text PDFBackground: Roxadustat is an oral hypoxia inducing factor-prolyl hydroxylase inhibitor (HIF-PHI) that regulates iron metabolism in patients with chronic kidney disease (CKD) primarily by reducing hepcidin levels and mobilizing internal iron stores. More data are needed to demonstrate the efficacy of roxadustat in regulating iron metabolism in patients with peritoneal dialysis (PD) compared with erythropoiesis stimulating agents (ESAs).
Methods: This prospective cohort study enrolled PD patients with a mean hemoglobin level of 60-100 g/L.
Remediating cadmium (Cd) contaminated paddy soil is vital for agroecology, food safety, and human health. Soil washing is more feasible to reduce remediation method due to its high efficiency. However, green, low-cost and more efficient washing agents are still required.
View Article and Find Full Text PDFPurpose: The development of roxadustat is a standard treatment for renal anemia, and multiple clinical trials have proved its safety and efficacy. However, less information is available from trials of the population with diabetic nephropathy (DN). This study aimed to determine whether roxadustat is effective for treating DN.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
October 2023
Heterostructured oxides with versatile active sites, as a class of efficient catalysts for CO electrochemical reduction (CO ER), are prone to undergo structure reconstruction under working conditions, thus bringing challenges to understanding the reaction mechanism and rationally designing catalysts. Herein, we for the first time elucidate the structural reconstruction of CuO/SnO under electrochemical potentials and reveal the intrinsic relationship between CO ER product selectivity and the in situ evolved heterostructures. At -0.
View Article and Find Full Text PDFPhosphorus recovery from water and the subsequent reuse of its products can solve both water eutrophication and phosphorus resource waste issues. However, the potential use of the final recovered products as crop phosphorus fertilizers and the transformation of phosphorus fractions in soils have rarely been analyzed. In this study, the effects of a phosphorus recovery product (w-HC/CSH/P) obtained from our previous phosphorus recovery study on pepper growth were investigated.
View Article and Find Full Text PDFThe anthropogenic activities in agriculture, industrialization, mining, and metallurgy combined with the natural weathering of rocks, have led to severe contamination of soils by toxic metal(loid)s. In an attempt to remediate these polluted sites, a plethora of conventional approaches such as Solidification/Stabilization (S/S), soil washing, electrokinetic remediation, and chemical oxidation/reduction have been used for the immobilization and removal of toxic metal(loid)s in the soil. However, these conventional methods are associated with certain limitations.
View Article and Find Full Text PDFThe purification and water resource circulation utilization of cadmium-containing leachate is a key link in the field application of microbial remediation in Cd-polluted soil. In this study, through a simulation experiment of microbial remediation of Cd-polluted paddy soil, the feasibility of the purification and recycling process of wastewater derived from microbial remediation of Cd-polluted soil was explored. The results of the microbial mobilization and removal experiment showed that the concentrations of Cd, N, P, and K in the leachate were 88.
View Article and Find Full Text PDFCO utilization is one of the hottest research topics worldwide. As a class of newly emerging and promising catalysts for electrochemical CO reduction (ECR) reaction, heteroatom-doped metal-N -C single atom catalysts (M-N -C SACs) attract extensive attentions. Nowadays, great progress, including structure modulation, identification of local coordination environment and ECR mechanism via advanced synthetic strategies, characterization techniques and theoretical calculations, have been achieved over heteroatom doped asymmetric M-N -C SACs, which boost the ECR performances and deepen the understanding of ECR mechanism.
View Article and Find Full Text PDFSoil contamination with potentially toxic element such as chromium (Cr) poses a threat to the environment and human health. The environmental toxicity of Cr is related not only to the total Cr content but also to the distribution of Cr fractions. In this study, laboratory simulation experiments were conducted to explore the characteristics of Cr fractions and responses of the functional microbial community during dynamic leaching and static drying processes.
View Article and Find Full Text PDFPatients with chronic kidney disease (CKD) are often complicated with heart failure with preserved ejection fraction (HFpEF). However, several drugs, including angiotensin-converting enzyme inhibitor (ACEI) and angiotensin receptor blocker (ARB), have not shown apparent benefits in terms of morbidity and mortality of HFpEF. PARAMOUNT and other studies have shown the potential benefits of Sacubitril/Valsartan on patients with HFpEF, but its effects on renal function and the effect of low-dose Sacubitril/Valsartan in actual clinical conditions have not been thoroughly evaluated.
View Article and Find Full Text PDFSupport corrosion is a traditional intractable problem for oxygen electrodes of fuel cells, so developing anti-corrosion supports is highly desirable. Herein, we fabricate a three-dimensional (3D) interconnected-graphene enveloped titanium dioxide flower (TiO@RGO) as a robust support for the oxygen reduction reaction (ORR). Benefiting from the unique 3D architecture, the TiO@RGO composite possesses both a large surface area of 174 m g and a superior electrical conductivity of 0.
View Article and Find Full Text PDFThe investigation of chemical speciation of primary toxic metal(loid)s (Cd, Pb, and As) in soil profile in nonferrous metal smelting site is a key to the assessment of their mobility characteristics and formulation of subsequent remediation strategy. In this study, 74 soil samples were collected at 12 different soil profiles; soil physio-chemical properties and total content of Cd, Pb and As and corresponding chemical speciation were also determined. The results showed that the mean total concentration followed the order of Pb > As > Cd.
View Article and Find Full Text PDFDesigning high-performance hydrogen evolution reaction (HER) catalysts is crucial for seawater splitting. Herein, we demonstrate a facile Anderson-type polyoxometalate-assisted synthesis route to prepare defect-rich doped 1T/2H-MoSe nanosheets. As demonstrated, the optimized defect-rich doped 1T/2H-MoSe nanosheets display low overpotentials of 116 and 274 mV to gain 10 mA cm in acidic and simulated seawater for the HER, respectively.
View Article and Find Full Text PDFThe response of soil bacterial communities from farmland ecosystems to cadmium (Cd) pollution, in which a steep concentration gradient of more than 100 mg/kg has naturally formed, has not previously been fully reported. In this study, a field investigation was conducted in a typical severe Cd-polluted farmland ecosystem, and the bacterial community response to the steep Cd gradient was analyzed. The results showed that Cd concentration sharply decreased from 159.
View Article and Find Full Text PDFOver the past few decades, nonferrous mining has produced numerous waste rock and part of the waste that has not been properly treated was generally dumped at roadsides and hill slopes. However, the vertical distributions of toxic metal(loid)s and composition of microbial communities in waste heap and the under-laid pristine soil are rarely studied. In this work, the fraction-related distributions of toxic metal(loid)s were investigated at a waste heap profile and the indigenous microbial assemblages were also analyzed by Illumina sequencing of 16 s rRNA genes.
View Article and Find Full Text PDF