Publications by authors named "Lufeng Zou"

The reactivities and π-facial stereoselectivities of Diels-Alder reactions of 5-substituted cyclopentadienes were studied using density functional theory. Burnell and co-workers previously showed that the π-facial selectivities result from the energies required to distort the reactants into the transition state geometries. We have discovered the origins of these distortions.

View Article and Find Full Text PDF

Halogen substituents increase sydnone cycloaddition reactivities substantially. Fluoro-sydnones are superior to bromo- and chloro-sydnones, and can achieve extremely high second-order rate constants with strained alkynes. Computational studies have revealed the fluorine substituent increases the reactivity of sydnone mainly by lowering its distortion energy.

View Article and Find Full Text PDF

The rearrangements of 4-substituted bicyclo[2.2.2]oct-5-en-2-yl radicals, generated from the corresponding Diels-Alder adducts with phenylseleno acrylates by radical-induced reductive deselenocarbonylations, give the 2-substituted bicyclo[3.

View Article and Find Full Text PDF

Schleyer's discovery of hyperconjugative aromaticity and antiaromaticity in 5-substituted cyclopentadienes further expanded our understanding of the pervasive influence of aromaticity. Acceptors induce antiaromatic character by Schleyer's negative hyperconjugative aromaticity, and donors have the opposite effect. We computationally explored the Diels-Alder reactivity of 5-substituted cyclopentadienes with ethylene and maleic anhydride.

View Article and Find Full Text PDF

Physicochemical properties constitute a key factor for the success of a drug candidate. Whereas many strategies to improve the physicochemical properties of small heterocycle-type leads exist, complex hydrocarbon skeletons are more challenging to derivatize because of the absence of functional groups. A variety of C-H oxidation methods have been explored on the betulin skeleton to improve the solubility of this very bioactive, yet poorly water-soluble, natural product.

View Article and Find Full Text PDF

A highly enantioselective catalytic protocol for the desymmetrization of a wide variety of 2-substituted and 2,2-disubstituted 1,3-diols is reported. This reaction proceeds through the formation of an "ortho ester" intermediate via oxidation of 1,3-diol benzylidene acetal by dimethyldioxirane (DMDO) and the subsequent proton transfer catalyzed by chiral phosphoric acid (CPA). The mechanism and origins of enantioselectivity of this reaction are identified using DFT calculations.

View Article and Find Full Text PDF

The mechanism of C-H activation at metathesis-relevant ruthenium(II) benzylidene complexes was studied both experimentally and computationally. Synthesis of a ruthenium dicarboxylate at a low temperature allowed for direct observation of the C-H activation step, independent of the initial anionic ligand-exchange reactions. A first-order reaction supports an intramolecular concerted metalation-deprotonation mechanism with ΔG(‡)(298K) = 22.

View Article and Find Full Text PDF

Enantioselective conjugate additions of arylboronic acids to β-substituted cyclic enones have been previously reported from our laboratories. Air- and moisture-tolerant conditions were achieved with a catalyst derived in situ from palladium(II) trifluoroacetate and the chiral ligand (S)-t-BuPyOx. We now report a combined experimental and computational investigation on the mechanism, the nature of the active catalyst, the origins of the enantioselectivity, and the stereoelectronic effects of the ligand and the substrates of this transformation.

View Article and Find Full Text PDF

The tricalysiolides are a recently isolated class of diterpene natural products featuring the carbon backbone of the well-known coffee extract, cafestol. Herein we validate the use of our non-heme iron complex, Fe(PDP), as an oxidative tailoring enzyme mimic to test the proposal that this class of natural products derives from cafestol via cytochrome P-450-mediated furan oxidation. Thereafter, as predicted by computational analysis, C-H oxidation derivatization studies provided a novel 2° alcohol product as a single diastereomer.

View Article and Find Full Text PDF

The site selectivities and stereoselectivities of C-H oxidations of substituted cyclohexanes and trans-decalins by dimethyldioxirane (DMDO) were investigated computationally with quantum mechanical density functional theory (DFT). The multiconfiguration CASPT2 method was employed on model systems to establish the preferred mechanism and transition state geometry. The reaction pathway involving a rebound step is established to account for the retention of stereochemistry.

View Article and Find Full Text PDF

Theoretical calculations were performed on the 1,3-dipolar cycloaddition reactions of 24 1,3-dipoles with ethylene and acetylene. The 24 1,3-dipoles are of the formula X≡Y(+)-Z(-) (where X is HC or N, Y is N, and Z is CH(2), NH, or O) or X═Y(+)-Z(-) (where X and Z are CH(2), NH, or O and Y is NH, O, or S). The high-accuracy G3B3 method was employed as the reference.

View Article and Find Full Text PDF