Wnt signaling pathways are transmitted via 10 homologous frizzled receptors (FZD1-10) in humans. Reagents broadly inhibiting Wnt signaling pathways reduce growth and metastasis of many tumors, but their therapeutic development has been hampered by the side effect. Inhibitors targeting specific Wnt-FZD pair(s) enriched in cancer cells may reduce side effect, but the therapeutic effect of narrow-spectrum Wnt-FZD inhibitors remains to be established in vivo.
View Article and Find Full Text PDFWe have synthesized an oxetane derivative of the benzimidazole compound mebendazole (OBD9) with enhanced solubility and strong anticancer activity in multiple types of cancer cells, especially colorectal cancer. In this report, we provide evidence that OBD9 suppresses colorectal cancer growth by interfering with the Wnt signaling pathway, a main driver of cell growth in colorectal cancer. Specifically, we find that OBD9 induces autophagic degradation of TNIK (traf2 and Nck-interacting kinase), which promotes T-cell factor-4 (TCF4)/beta-catenin-mediated gene expression.
View Article and Find Full Text PDFEndoplasmic reticulum aminopeptidase 1 (ERAP1) plays a key role in controlling the immunopeptidomes available for presentation by MHC (major histocompatibility complex) molecules, thus influences immunodominance and cell-mediated immunity. It carries out this critical function by a unique molecular ruler mechanism that trims antigenic precursors in a peptide-length and sequence dependent manner. Acting as a molecular ruler, ERAP1 is capable of concurrently binding antigen peptide N- and C-termini by its N-terminal catalytic and C-terminal regulatory domains, respectively.
View Article and Find Full Text PDFBiochem Biophys Rep
September 2021
Insulin-regulated aminopeptidase (IRAP) in humans is a membrane bound enzyme that has multiple functions. It was first described as a companion protein of the insulin-responsive glucose transporter, Glut4, in specialized vesicles. The protein has subsequently been shown to be identical to the oxytocinase/aminopeptidase or the angiotensin IV (Ang IV) receptor (AT receptor).
View Article and Find Full Text PDFAngiogenesis plays a key role in the pathology of diseases such as cancer, diabetic retinopathy, and age-related macular degeneration. Understanding the driving forces of endothelial cell migration and organization, as well as the time frame of these processes, can elucidate mechanisms of action of important pathological pathways. Herein, we have developed an organ-specific microfluidic platform recapitulating the in vivo angiogenic microenvironment by co-culturing mouse primary brain endothelial cells with brain pericytes in a three-dimensional (3D) collagen scaffold.
View Article and Find Full Text PDFEndoplasmic reticulum aminopeptidase 1 (ERAP1) is involved in the final processing of peptide precursors to generate the N-termini of MHC class I-restricted epitopes. ERAP1 thus influences immunodominance and cytotoxic immune responses by controlling the peptide repertoire available for cell surface presentation by MHC molecules. To enable this critical role in antigen processing, ERAP1 trims peptides by a unique molecular ruler mechanism that turns on/off hydrolysis activity in a peptide-length and -sequence dependent manner.
View Article and Find Full Text PDFAspartylglucosaminuria (AGU) is a lysosomal storage disease caused by a metabolic disorder of lysosomes to digest Asn-linked glycoproteins. The specific enzyme linked to AGU is a lysosomal hydrolase called glycosylasparaginase. Crystallographic studies revealed that a surface loop blocks the catalytic center of the mature hydrolase.
View Article and Find Full Text PDF