Publications by authors named "Luella Marcos"

Convolutional neural networks (CNN) have been used for a wide variety of deep learning applications, especially in computer vision. For medical image processing, researchers have identified certain challenges associated with CNNs. These challenges encompass the generation of less informative features, limitations in capturing both high and low-frequency information within feature maps, and the computational cost incurred when enhancing receptive fields by deepening the network.

View Article and Find Full Text PDF

With the increasing concern regarding the radiation exposure of patients undergoing computed tomography (CT) scans, researchers have been using deep learning techniques to improve the quality of denoised low-dose CT (LDCT) images. In this paper, a cascaded dilated residual network (ResNet) with integrated attention modules, specifically spatial- and channel- attention modules, is proposed. This experiment demonstrated how these attention modules improved the denoised CT image by testing a simple ResNet with and without the modules.

View Article and Find Full Text PDF

Deep learning techniques have emerged in de-noising low-dose computed tomography (CT) images to avoid the potential health risks of high ionizing radiation dose on patients. Although these post-processing methods display high quality denoised images, the denoising performance still has the potential to improve. The primary purpose of this work was to determine and analyze the most effective and efficient hybrid loss function in deep learning (DL)-based denoising network.

View Article and Find Full Text PDF

Image denoising of Low-dose computed tomography (LDCT) images has continues to receive attention in the research community due to ongoing concerns about high-dose radiation exposure of patients for diagnosis. The use of low radiation CT image, however, could lead to inaccurate diagnosis due to the presence of noise. Deep learning techniques are being integrated into denoising methods to address this problem.

View Article and Find Full Text PDF