Publications by authors named "Ludwik W Bielczynski"

Photoprotection by non-photochemical quenching is important for optimal growth and development, especially during dynamic changes of the light intensity. The main component responsible for energy dissipation is called qE. It has been proposed that qE involves the reorganization of the photosynthetic complexes and especially of Photosystem II.

View Article and Find Full Text PDF

Carotenoids are essential in oxygenic photosynthesis: they stabilize the pigment-protein complexes, are active in harvesting sunlight and in photoprotection. In plants, they are present as carotenes and their oxygenated derivatives, xanthophylls. While mutant plants lacking xanthophylls are capable of photoautotrophic growth, no plants without carotenes in their photosystems have been reported so far, which has led to the common opinion that carotenes are essential for photosynthesis.

View Article and Find Full Text PDF

In several systems, from plant's canopy to algal bioreactors, the decrease of the antenna size has been proposed as a strategy to increase the photosynthetic efficiency. However, still little is known about possible secondary effects of such modifications. This is particularly relevant because the modulation of the antenna size is one of the most important light acclimation responses in photosynthetic organisms.

View Article and Find Full Text PDF

In this work, we studied the changes in high-light tolerance and photosynthetic activity in leaves of the Arabidopsis () rosette throughout the vegetative stage of growth. We implemented an image-analysis work flow to analyze the capacity of both the whole plant and individual leaves to cope with excess excitation energy by following the changes in absorbed light energy partitioning. The data show that leaf and plant age are both important factors influencing the fate of excitation energy.

View Article and Find Full Text PDF

To survive under highly variable environmental conditions, higher plants have acquired a large variety of acclimation responses. Different strategies are used to cope with changes in light intensity with the common goal of modulating the functional antenna size of Photosystem II (PSII). Here we use a combination of biochemical and biophysical methods to study these changes in response to acclimation to high light (HL).

View Article and Find Full Text PDF