Publications by authors named "Ludwik Gorczyca"

Cadmium (Cd) is a ubiquitous environmental metal detectable in most pregnant women. Animal and human studies demonstrate that in utero exposure to Cd reduces birth weight and impairs perinatal growth due to placental toxicity. BCRP is a prominent transporter that can efflux xenobiotics from the placenta.

View Article and Find Full Text PDF

Low oxygen concentration, or hypoxia, is an important physiological regulator of placental function including chemical disposition. Here, we compared the ability of low oxygen tension to alter the expression of solute carriers (SLC) and ABC transporters in two human placental models, namely BeWo cells and term placental explants. We found that exposure to low oxygen concentration differentially regulates transporter expression in BeWo cells, including downregulation of ENT1, OATP4A1, OCTN2, BCRP, and MRP2/3/5, and upregulation of CNT1, OAT4, OATP2B1, SERT, SOAT, and MRP1.

View Article and Find Full Text PDF

: The breast cancer resistance protein (BCRP/) is a member of the ATP-binding cassette superfamily of transporters. Using the energy garnered from the hydrolysis of ATP, BCRP actively removes drugs and endogenous molecules from the cell. With broad expression across the liver, kidney, brain, placenta, testes, and small intestines, BCRP can impact the pharmacokinetics and pharmacodynamics of xenobiotics.

View Article and Find Full Text PDF

Multidrug resistance protein 1 (MDR1, ABCB1, P-glycoprotein) is a critical efflux transporter that extrudes chemicals from the blood-brain barrier (BBB) and limits neuronal exposure to xenobiotics. Prior studies in malignant cells demonstrated that MDR1 expression can be altered by inhibition of histone deacetylases (HDAC), enzymes that modify histone structure and influence transcription factor binding to DNA. Here, we sought to identify the mechanisms responsible for the up-regulation of MDR1 by HDAC inhibitors in human BBB cells.

View Article and Find Full Text PDF

In the placenta, the breast cancer resistance protein (BCRP)/ABCG2 efflux transporter limits the maternal-to-fetal transfer of drugs and chemicals. Previous research has pointed to the estrogenic mycotoxin zearalenone as a potential substrate for BCRP. Here, we sought to assess the role of the BCRP transporter in the transplacental disposition of zearalenone during pregnancy.

View Article and Find Full Text PDF

Introduction: The BCRP/ABCG2 efflux transporter protects the developing fetus by limiting the transplacental transfer of drugs and chemicals and prevents the apoptosis of trophoblasts. The purpose of this study was to determine whether hypoxia-related signaling alters placental BCRP expression and function in vitro and in human pregnancies.

Methods: Human BeWo choriocarcinoma cells were treated with the hypoxia mimetic, cobalt chloride (CoCl), or 3% oxygen for 24-48 h.

View Article and Find Full Text PDF

Identifying regulators of placental breast cancer resistance protein (BCRP) expression is critical as downregulation of this transporter may increase exposure of the fetus to xenobiotics. Here, we sought to test whether the nuclear receptor peroxisome proliferator-activated receptor γ (PPARγ) regulates BCRP expression in the placenta. To test this, human BeWo placental choriocarcinoma cells were cultured with the PPARγ agonist rosiglitazone or the PPARγ antagonist T0070907 for 24 h.

View Article and Find Full Text PDF

Glyburide is frequently used to treat gestational diabetes owing to its low fetal accumulation resulting from placental efflux by the breast cancer resistance protein (BCRP)/ABCG2 transporter. Here we sought to determine how exposure to the dietary phytoestrogen genistein and expression of a loss-of-function polymorphism in the ABCG2 gene (C421A) impacted the transport of glyburide by BCRP using stably transfected human embryonic kidney 293 (HEK) cells, human placental choriocarcinoma BeWo cells, and human placental explants. Genistein competitively inhibited the BCRP-mediated transport of (3)H-glyburide in both wild-type (WT) and C421A-BCRP HEK-expressing cells, with greater accumulation of (3)H-glyburide in cells expressing the C421A variant.

View Article and Find Full Text PDF

Long-term parenteral nutrition (PN) administration can lead to PN-associated liver diseases (PNALD). Although multiple risk factors have been identified for PNALD, to date, the roles of bile acids (BAs) and the pathways involved in BA homeostasis in the development and progression of PNALD are still unclear. We have established a mouse PN model with IV infusion of PN solution containing soybean oil-based lipid emulsion (SOLE).

View Article and Find Full Text PDF