Inducing superconducting correlations in chiral edge states is predicted to generate topologically protected zero energy modes with exotic quantum statistics. Experimental efforts so far have focused on engineering interfaces between superconducting materials-typically amorphous metals-and semiconducting quantum Hall or quantum anomalous Hall systems. However, the strong interfacial disorder inherent in this approach can prevent the formation of isolated topological modes.
View Article and Find Full Text PDFMagic-angle twisted trilayer graphene (MATTG) exhibits a range of strongly correlated electronic phases that spontaneously break its underlying symmetries. Here we investigate the correlated phases of MATTG using scanning tunnelling microscopy and identify marked signatures of interaction-driven spatial symmetry breaking. In low-strain samples, over a filling range of about two to three electrons or holes per moiré unit cell, we observe atomic-scale reconstruction of the graphene lattice that accompanies a correlated gap in the tunnelling spectrum.
View Article and Find Full Text PDFIn conventional superconductors, Cooper pairing occurs between electrons of opposite spin. We observe spin-polarized superconductivity in Bernal bilayer graphene when doped to a saddle-point van Hove singularity generated by large applied perpendicular electric field. We observe a cascade of electrostatic gate-tuned transitions between electronic phases distinguished by their polarization within the isospin space defined by the combination of the spin and momentum-space valley degrees of freedom.
View Article and Find Full Text PDFStrongly correlated electronic systems can harbor a rich variety of quantum spin states. Understanding and controlling such spin states in quantum materials is of great current interest. Focusing on the simple binary system UPt with ultrasound (US) as a probe we identify clear signatures in field sweeps demarkating new high field spin phases.
View Article and Find Full Text PDF