Norrin is a secreted signaling molecule activating the Wnt/β-catenin pathway. Since Norrin protects retinal neurons from experimental acute injury, we were interested to learn if Norrin attenuates chronic damage of retinal ganglion cells (RGC) and their axons in a mouse model of glaucoma. Transgenic mice overexpressing Norrin in the retina (Pax6-Norrin) were generated and crossed with DBA/2J mice with hereditary glaucoma and optic nerve axonal degeneration.
View Article and Find Full Text PDFNorrin is an angiogenic signaling molecule that activates canonical Wnt/β-catenin signaling, and is involved in capillary formation in retina and brain. Moreover, Norrin induces vascular repair following an oxygen-induced retinopathy (OIR), the model of retinopathy of prematurity in mice. Since insulin-like growth factor (IGF)-1 is a very potent angiogenic molecule, we investigated if IGF-1 is a downstream mediator of Norrin's angiogenic properties.
View Article and Find Full Text PDFOptineurin, a cytosolic protein associated with the actin cytoskeleton, microtubules, and the Golgi complex, appears to have an important function in neurons, as mutations in its gene are causative for neurodegenerative diseases such as primary open-angle glaucoma and amyotrophic lateral sclerosis. Here, we report that optineurin is localized in podocytes of the kidney and induced upon injury following treatment with puromycin aminonucleoside. In cultured human podocytes, optineurin localizes to the Golgi complex.
View Article and Find Full Text PDFWnt/β-catenin signaling induced by the Norrin/Frizzled-4 pathway has been shown to improve capillary repair following oxygen induced retinopathy (OIR) in the mouse, a model for retinopathy of prematurity. Here we investigated if treatment with the monovalent cation lithium that has been shown to augment Wnt/β-catenin signaling in vitro and in vivo has similar effects. In cultured human microvascular endothelial cells, LiCl as well as SB 216763, another small molecule that activates Wnt/β-catenin signaling, induced proliferation, survival and migration, which are all common parameters for angiogenic properties in vitro.
View Article and Find Full Text PDFStructural changes of podocytes and retraction of their foot processes are a critical factor in the pathogenesis of minimal change nephritis and glomerulosclerosis. Here we tested, if connective tissue growth factor (CTGF) is involved in podocyte injury during acute and chronic puromycin aminonucleoside nephrosis (PAN) as animal models of minimal change nephritis, and focal segmental glomerulosclerosis, respectively. Rats were treated once (acute PAN) or for 13 weeks (chronic PAN).
View Article and Find Full Text PDF