Publications by authors named "Ludwig Erik Aguilar"

Poly (ethyl-2) cyanoacrylate was used to create an adhesion-free biocompatible non-woven material reinforced by polyurethane core via a co-axial electrospinning set-up. The effect of relative humidity (RH) of (18, 30, 40, 60, and 68) % on the electrospinning process was examined, and found that in order to achieve well defined core-shell fiber structure, the optimal RH was 18%. If the RH is >18%, a phenomenon called Taylor cone cyclic destabilization occurs, which results in unfavorable surface and mechanical properties of the mat.

View Article and Find Full Text PDF

The natural phenolic molecule caffeic acid, show promising effects on biological systems as an anti/pro-oxidant, anti-cancer, and anti-inflammatory agent. In nanoparticle functionalization designs, most organic nanoparticle coatings are utilized only for their ability to carry chemotherapeutics and targeting ligand. In this study, UV-light and auto-oxidation polymerization of caffeic acid on top of as-prepared gold nanoparticles was utilized to bring about a 5 nm multifunctional coating.

View Article and Find Full Text PDF

Phenolics from plant materials have garnered attention in nanomedicine research, due to their various medicinal properties. Caffeic acid, a phenolic compound that is abundant in coffee beans, has been proven to have anticancer effects, due to its reactive oxygen species (ROS)-inducing properties. Here, a supramolecular nanomedicine was designed using caffeic acid molecule and the synthetic anticancer drug bortezomib, via catechol-boronic acid conjugation and Fe(III) ion crosslinking.

View Article and Find Full Text PDF

It is known that the behavior of a drug released from a supporting carrier is influenced by the surrounding environment and the carrier. In this study, we investigated the drug behavior of a swellable electrospun nanofibrous membrane. Nanofibrous mats with different swelling ratios were prepared by mixing cellulose acetate (CA) and polyurethane (PU).

View Article and Find Full Text PDF

Titanium implants are extensively used in biomedical applications due to their excellent biocompatibility, corrosion resistance, and superb mechanical stability. In this work, we present the use of polycaffeic acid (PCA) to immobilize metallic silver on the surface of titanium materials to prevent implant bacterial infection. Caffeic acid is a plant-derived phenolic compound, rich in catechol moieties and it can form functional coatings using alkaline buffers and with UV irradiation.

View Article and Find Full Text PDF

Stainless steel as a biomedical implant material has been studied in various fields and in various forms, such as vascular stents, bone plates, dental screws, and artificial hip and bone material. In this study, we used polycaffeic acid (PCA), a natural phenolic compound, to coat the surface of medical grade stainless steel to provide added potential medicinal effects by virtue of its inherent anti-inflammatory, antiviral, antifibrosis, antithrombosis, and antihypertensive characteristics. We did this via UV irradiation under an alkaline state to solve the cost and time problems of other existing coating methods.

View Article and Find Full Text PDF

We have successfully extracted cellulose nanocrystals (CNCs) from seaweed by removing unwanted materials via our modified process. The prepared CNCs were mixed with two biocompatible polymers (polyethylene oxide (PEO)/Eudragit S100). We used the most popular electrospinning method to fabricate a micro/nano-net membrane.

View Article and Find Full Text PDF

We have studied the technique for efficient prolong the shelf-life of fruit. To prolong the shelf-life of fruit, one of the most important factor is the concentration of oxygen (O₂) and carbon dioxide (CO₂) produced by the fruits inside the packaging. Therefore, to create the right environment, it recommended creating pores which O₂ and CO₂ can be exchanged.

View Article and Find Full Text PDF

A new nano air filter for fine dust filtration with antibacterial and volatile organic compounds (VOCs) adsorption properties was fabricated using a bottom-up, high-speed electrospinning system. To optimize production, polyurethane fibers were electrospun at various voltages on polypropylene nonwoven fabrics, and results show that fiber diameter decreased as voltage increased. Silver nanoparticles (AgNPs) and Activated Carbon (AC) were used as antimicrobials and VOC-reducing agents.

View Article and Find Full Text PDF

Bone tissue engineering is an interdisciplinary field where the principles of engineering are applied on bone-related biochemical reactions. Scaffolds, cells, growth factors, and their interrelation in microenvironment are the major concerns in bone tissue engineering. Among many alternatives, electrospinning is a promising and versatile technique that is used to fabricate polymer fibrous scaffolds for bone tissue engineering applications.

View Article and Find Full Text PDF

Chemothermal brachytherapy seeds have been developed using a combination of polymeric dual drug chemotherapy and alternating magnetic field induced hyperthermia. The synergistic effect of chemotherapy and hyperthermia brachytherapy has been investigated in a way that has never been performed before, with an in-depth analysis of the cancer cell inhibition property of the new system. A comprehensive in vivo study on athymic mice model with SCC7 tumor has been conducted to determine optimal arrays and specifications of the chemothermal seeds.

View Article and Find Full Text PDF

Gastrointestinal malignancies have been a tremendous problem in the medical field and cover a wide variety of parts of the system, (i.e. esophagus, duodenum, intestines, and rectum).

View Article and Find Full Text PDF

A functional cover made up of core-shell nanofibers with a unique combination of thermoresponsive polymeric shell and stretchable polymeric core for non-vascular nitinol stents that uses an alternating magnetic field (AMF) to induce heat in the stent for hyperthermia therapy and simultaneously release 5-fluorouracil and/or paclitaxel was designed. Varying the ratios of NIPAAm to HMAAm monomer resulted in different LCST properties for the synthesized copolymer and further utilized for an on-demand drug release. Biocompatibility test using NIH-3T3 fibroblast cells indicates that the composite with drug content is biocompatible and the in-vitro cancer cytotoxicity test using ESO26 and OE21 cancer cells proved that the material shows cancer cytotoxic properties via combination of dual drug and hyperthermia therapy.

View Article and Find Full Text PDF

This study reports on an intelligent composite hydrogel with both pH-dependent drug release in a cancer environment and heat generation based on NIR laser exposure, for the combined application of photothermal therapy (PTT) and multidrug chemotherapy. For the first time in the literature, Dopamine nanoparticle (DP) was incorporated as a highly effective photothermal agent as well as anticancer drug, bortezomib (BTZ) carrier inside a stimuli responsive pNIPAAm-co-pAAm hydrogel. When light is applied to the composite hydrogel, DP nanoparticle absorbs the light, which is dissipated locally as heat to impact cancer cells via hyperthermia.

View Article and Find Full Text PDF

Scaffolds made of aligned nanofibers are favorable for nerve regeneration due to their superior nerve cell attachment and proliferation. However, it is challenging not only to produce a neat mat or a conduit form with aligned nanofibers but also to use these for surgical applications as a nerve guide conduit due to their insufficient mechanical strength. Furthermore, no studies have been reported on the fabrication of aligned nanofibers and randomly-oriented nanofibers on the same mat.

View Article and Find Full Text PDF

A nanofiber composite mat of PU and Eudragit(®) L100-55 was created using electrospinning process. The pH dependent release of paclitaxel was successfully done with the use of PU/EL100-55 nanocomposite mats as the controlling platform. The morphology of the nanofiber composites was surveyed using FESEM and ratios of the polymers affects the diameter of the nanofiber.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionrpsb9j4h6484m8l594mt2ru1ohsfvrlg): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once