Fluorescence Resonance Energy Transfer (FRET)-based approaches are unique tools for sensing the immediate surroundings and interactions of (bio)molecules. FRET imaging and Fluorescence Lifetime Imaging Microscopy (FLIM) enable the visualization of the spatial distribution of molecular interactions and functional states. However, conventional FLIM and FRET imaging provide average information over an ensemble of molecules within a diffraction-limited volume, which limits the spatial information, accuracy, and dynamic range of the observed signals.
View Article and Find Full Text PDFPopulations of bacteria often undergo a lag in growth when switching conditions. Because growth lags can be large compared to typical doubling times, variations in growth lag are an important but often overlooked component of bacterial fitness in fluctuating environments. We here explore how growth lag variation is determined for the archetypical switch from glucose to lactose as a carbon source in Escherichia coli.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
February 2020
Organelle-specific nanocarriers (NCs) are highly sought after for delivering therapeutic agents into the cell nucleus. This necessitates nucleocytoplasmic transport (NCT) to bypass nuclear pore complexes (NPCs). However, little is known as to how comparably large NCs infiltrate this vital intracellular barrier to enter the nuclear interior.
View Article and Find Full Text PDFTransport of membrane and cytosolic proteins in primary cilia is thought to depend on intraflagellar transport (IFT) and diffusion. However, the relative contribution and spatial routes of each transport mechanism are largely unknown. Although challenging to decipher, the details of these routes are essential for our understanding of protein transport in primary cilia, a critically affected process in many genetic diseases.
View Article and Find Full Text PDFNanopores fabricated from glass microcapillaries are used in applications ranging from scanning ion conductance microscopy to single-molecule detection. Still, evaluating the nanocapillary tip by a noninvasive means remains challenging. For instance, electron microscopy characterization techniques can charge, heat, and contaminate the glass surface and typically require conductive coatings that influence the final tip geometry.
View Article and Find Full Text PDFThe functional state of the genome is determined by its interactions with proteins that bind, modify, and move along the DNA. To determine the positions and binding strength of proteins localized on DNA we have developed a combined magnetic and optical tweezers apparatus that allows for both sensitive and label-free detection. A DNA loop, that acts as a scanning probe, is created by looping an optically trapped DNA tether around a DNA molecule that is held with magnetic tweezers.
View Article and Find Full Text PDFWe report on a new form of III-V compound semiconductor nanostructures growing epitaxially as vertical V-shaped nanomembranes on Si(001) and study their light-scattering properties. Precise position control of the InAs nanostructures in regular arrays is demonstrated by bottom-up synthesis using molecular beam epitaxy in nanoscale apertures on a SiO(2) mask. The InAs V-shaped nanomembranes are found to originate from the two opposite facets of a rectangular pyramidal island nucleus and extend along two opposite <111> B directions, forming flat {110} walls.
View Article and Find Full Text PDFIn E. coli homologous recombination, a filament of RecA protein formed on DNA searches and pairs a homologous sequence within a second DNA molecule with remarkable speed and fidelity. Here, we directly probe the strength of the two-molecule interactions involved in homology search and recognition using dual-molecule manipulation, combining magnetic and optical tweezers.
View Article and Find Full Text PDF