Unlabelled: Dye-decolorizing peroxidases are heme peroxidases with a broad range of substrate specificity. Their physiological function is still largely unknown, but a role in the depolymerization of plant cell wall polymers has been widely proposed. Here, a new expression system for bacterial dye-decolorizing peroxidases as well as the activity with previously unexplored plant molecules are reported.
View Article and Find Full Text PDFBackground: Laccases are multicopper enzymes that oxidize a wide range of aromatic and non-aromatic compounds in the presence of oxygen. The majority of industrially relevant laccases are derived from fungi and are produced in eukaryotic expression systems such as Pichia pastoris and Saccharomyces cerevisiae. Bacterial laccases for research purposes are mostly produced intracellularly in Escherichia coli, but secretory expression systems are needed for future applications.
View Article and Find Full Text PDFLignin degradation in fungal systems is well characterized. Recently, a potential for lignin depolymerization and modification employing similar enzymatic activities by bacteria is increasingly recognized. The presence of genes annotated as peroxidases in Actinobacteria genomes suggests that these bacteria should contain auxiliary enzymes such as flavin-dependent carbohydrate oxidoreductases.
View Article and Find Full Text PDFIn and some other lactic acid bacteria, respiratory metabolism has been reported upon supplementation with only heme, leading to enhanced biomass formation, reduced acidification, resistance to oxygen, and improved long-term storage. Genes encoding a complete respiratory chain with all components were found in genomes of and , but menaquinone biosynthesis was found to be incomplete in Lactobacillaceae (except ). has only two genes (, ) encoding enzymes in the biosynthetic pathway (out of eight), and has only four (, , , and ).
View Article and Find Full Text PDF