Publications by authors named "Ludovic Wiszniewski"

Respiratory viral infections cause mild to severe diseases, such as common cold, bronchiolitis and pneumonia and are associated with substantial burden for society. To test new molecules for shortening, alleviating the diseases or to develop new therapies, relevant human in vitro models are mandatory. MucilAir™, a human standardized air-liquid interface 3D airway epithelial culture holds in vitro specific mechanisms to counter invaders comparable to the in vivo situation, such as mucus production, mucociliary clearance, and secretion of defensive molecules.

View Article and Find Full Text PDF

We report here the establishment and characterization of an in vitro human small airway model (SmallAir™). The epithelial cells were isolated from the distal lungs by enzymatic digestion. After amplification, the cells were seeded on the microporous membrane of Transwell inserts.

View Article and Find Full Text PDF

With more than 1 million deaths worldwide every year, lung cancer remains an area of unmet need. Accessible human in vitro 3D tissue models are required to improve preclinical predictivity. OncoCilAir™ is a new in vitro model of Non Small Cell Lung Cancer which combines a reconstituted human airway epithelium, human lung fibroblasts and lung adenocarcinoma cell lines.

View Article and Find Full Text PDF

The deletion of Phe508 (ΔF508) in the first nucleotide binding domain (NBD1) of CFTR is the most common mutation associated with cystic fibrosis. The ΔF508-CFTR mutant is recognized as improperly folded and targeted for proteasomal degradation. Based on molecular dynamics simulation results, we hypothesized that interaction between ΔF508-NBD1 and housekeeping proteins prevents ΔF508-CFTR delivery to the plasma membrane.

View Article and Find Full Text PDF

Respiratory sensitizers are considered as substances of higher risk, at the same level as carcinogens, mutagens and toxic chemicals for reproduction. Presently, there is no validated assay for identifying the respiratory sensitizers. Based on a fully differentiated and functional in vitro cell model of the human airway epithelium, MucilAir™, we attempt to develop such assay.

View Article and Find Full Text PDF

The investigation of novel targets for the treatment of cystic fibrosis (CF) lung inflammation is a major priority, considering that no effective therapy is available for this purpose. Consistent with the evidence that the sphingolipid (SL) ceramide regulates airway inflammation and infection in mice and patients with CF, SLs were identified as targets for treating pulmonary disorders, including CF. Because miglustat, an inhibitor of the synthesis of glycosphingolipids, reduces the Pseudomonas aeruginosa-dependent transcription of the IL-8 gene in bronchial cells, we examined the effects of miglustat and amitriptyline, another drug affecting ceramide metabolism, on the expression of 92 genes implicated in host immune defense.

View Article and Find Full Text PDF

One of the main functions of the airway mucosa is to maintain a mechanical barrier at the air-surface interface and to protect the respiratory tract from external injuries. Differentiation of human airway epithelial cells (hAECs) to polarized airway mucosa can be reproduced in vitro by culturing the cells on microporous membrane at the air-liquid interface. Here, we describe approaches to study differentiation as well as repair of the hAECs by using a commercially available airway cell culture model called MucilAir™.

View Article and Find Full Text PDF

Gap junctions are documented in the human airway epithelium but the functional expression and molecular identity of their protein constituents (connexins, Cx) in the polarized epithelium is not known. To address this question, we documented the expression of a family of epithelial Cx (Cx26, Cx30, Cx30.3, Cx31, Cx31.

View Article and Find Full Text PDF

The poor ability of respiratory epithelial cells to proliferate and differentiate in vitro into a pseudostratified mucociliated epithelium limits the general use of primary airway epithelial cell (AEC) cultures generated from patients with rare diseases, such as cystic fibrosis (CF). Here, we describe a procedure to amplify AEC isolated from nasal polyps and generate long-term cultures of the respiratory epithelium. AEC were seeded onto microporous permeable supports that carried on their undersurface a preformed feeder layer of primary human airway fibroblasts.

View Article and Find Full Text PDF

Dysfunction of the cystic fibrosis transmembrane conductance regulator (CFTR) is associated with recurrent pulmonary infections and inflammation. We previously reported that tumor necrosis factor (TNF)-alpha decreases gap junction connectivity in cell lines derived from the airway epithelium of non-cystic fibrosis (non-CF) subjects, a mechanism that was defective in cells derived from CF patients, and identified the tyrosine kinase c-Src as a possible bridge between TNF-alpha and Cx43. To examine whether this modulation also takes place in primary epithelial cells, the functional expression of Cx43 was studied in non-CF and CF airway cells, obtained from surgical polypectomies and turbinectomies, which were grown either on culture dishes or permeable filters.

View Article and Find Full Text PDF