Publications by authors named "Ludovic Plante"

Weoutline the program to apply modern quantum field theory methods to calculate observables in classical general relativity through a truncation to classical terms of the multigraviton, two-body, on-shell scattering amplitudes between massive fields. Since only long-distance interactions corresponding to nonanalytic pieces need to be included, unitarity cuts provide substantial simplifications for both post-Newtonian and post-Minkowskian expansions. We illustrate this quantum field theoretic approach to classical general relativity by computing the interaction potentials to second order in the post-Newtonian expansion, as well as the scattering functions for two massive objects to second order in the post-Minkowskian expansion.

View Article and Find Full Text PDF

We consider the scattering of lightlike matter in the presence of a heavy scalar object (such as the Sun or a Schwarzschild black hole). By treating general relativity as an effective field theory we directly compute the nonanalytic components of the one-loop gravitational amplitude for the scattering of massless scalars or photons from an external massive scalar field. These results allow a semiclassical computation of the bending angle for light rays grazing the Sun, including long-range ℏ contributions.

View Article and Find Full Text PDF