Epilepsy affects 1 in 150 children under the age of 10 and is the most common chronic pediatric neurological condition; poor seizure control can irreversibly disrupt normal brain development. The present study compared the ability of different machine learning algorithms trained with resting-state functional MRI (rfMRI) latency data to detect epilepsy. Preoperative rfMRI and anatomical MRI scans were obtained for 63 patients with epilepsy and 259 healthy controls.
View Article and Find Full Text PDFObjective: This study aims to evaluate the performance of convolutional neural networks (CNNs) trained with resting-state functional magnetic resonance imaging (rfMRI) latency data in the classification of patients with pediatric epilepsy from healthy controls.
Methods: Preoperative rfMRI and anatomic magnetic resonance imaging scans were obtained from 63 pediatric patients with refractory epilepsy and 259 pediatric healthy controls. Latency maps of the temporal difference between rfMRI and the global mean signal were calculated using voxel-wise cross-covariance.
Objective: Selective dorsal rhizotomy (SDR) is a surgical procedure used to treat spasticity in children with spastic cerebral palsy. Currently, there is a lack of work examining the efficacy of optimizing pain management protocols after single-level laminectomy for SDR. This pilot study aimed to compare the clinical outcomes of SDR completed with a traditional pain management protocol versus one designed for opioid dosage reduction.
View Article and Find Full Text PDFBackground: Pediatric epilepsy affects 0.5-1% of children, with 10-30% of these children refractory to medical anticonvulsant therapy and potentially requiring surgical intervention. Analysis of resting state functional MRI (rsMRI) signal temporal differences (latency) has been proposed to study the pathological cognitive processes.
View Article and Find Full Text PDFpH-responsive, polyanionic nanoscale hydrogels were developed for the oral delivery of hydrophobic therapeutics, such as common chemotherapeutic agents. Nanoscale hydrogels were designed to overcome physicochemical and biological barriers associated with oral delivery of hydrophobic therapeutics such as low solubility and poor permeability due to P-glycoprotein related drug efflux. Synthesis of these nanoscale materials was achieved by a robust photoemulsion polymerization method.
View Article and Find Full Text PDF