We investigate the scattering attenuation characteristics of the Martian crust and uppermost mantle to understand the structure of the Martian interior. We examine the energy decay of the spectral envelopes for 21 high-quality Martian seismic events from Sol 128 to Sol 500 of InSight operations. We use the model of Dainty et al.
View Article and Find Full Text PDFA planet's crust bears witness to the history of planetary formation and evolution, but for Mars, no absolute measurement of crustal thickness has been available. Here, we determine the structure of the crust beneath the InSight landing site on Mars using both marsquake recordings and the ambient wavefield. By analyzing seismic phases that are reflected and converted at subsurface interfaces, we find that the observations are consistent with models with at least two and possibly three interfaces.
View Article and Find Full Text PDFJ Acoust Soc Am
February 2015
This study focuses on imaging local changes in heterogeneous media. The method employed is demonstrated and validated using numerical experiments of acoustic wave propagation in a multiple scattering medium. Changes are simulated by adding new scatterers of different sizes at various positions in the medium, and the induced decorrelation of the diffuse (coda) waveforms is measured for different pairs of sensors.
View Article and Find Full Text PDFThis paper investigates the scattering of scalar and elastic waves in two-phase materials and single-mineral-cubic, hexagonal, orthorhombic-polycrystalline aggregates with randomly oriented grains. Based on the Dyson equation for the mean field, explicit expressions for the imaginary part of Green's function in the frequency-wavenumber domain (ω, p), also known as the spectral function, are derived. This approach allows the identification of propagating modes with their relative contribution, and the computation of both attenuation and phase velocity for each mode.
View Article and Find Full Text PDFThis paper investigates the reconstruction of elastic Green's function from the cross-correlation of waves excited by random noise in the context of scattering theory. Using a general operator equation-the resolvent formula-Green's function reconstruction is established when the noise sources satisfy an equipartition condition. In an inhomogeneous medium, the operator formalism leads to generalized forms of optical theorem involving the off-shell T-matrix of elastic waves, which describes scattering in the near-field.
View Article and Find Full Text PDFHemispherical asymmetry is a prominent feature of Earth's inner core, but how this asymmetry relates to core growth is unknown. Based on multiple-scattering modeling of seismic velocity and attenuation measurements sampling the whole uppermost inner core, we propose that the growth of the solid core implies an eastward drift of the material, driven by crystallization in the Western Hemisphere and melting in the Eastern Hemisphere. This self-sustained translational motion generates an asymmetric distribution of sizes of iron crystals, which grow during their translation.
View Article and Find Full Text PDFPhys Rev E Stat Nonlin Soft Matter Phys
July 2009
In this paper, we present a nonparametric method to estimate the heterogeneity of a random medium from the angular distribution of intensity of waves transmitted through a slab of random material. Our approach is based on the modeling of forward multiple scattering using compound Poisson processes on compact Lie groups. The estimation technique is validated through numerical simulations based on radiative transfer theory.
View Article and Find Full Text PDFJ Acoust Soc Am
January 2009
The spectral decomposition of the elastic wave operator in a layered isotropic half-space is derived by means of standard functional analysis methods. Particular attention is paid to the coupled P-SV waves. The problem is formulated directly in terms of displacements which leads to a 2 x 2 Sturm-Liouville system.
View Article and Find Full Text PDFPhys Rev E Stat Nonlin Soft Matter Phys
January 2006
In this paper, we present two experimental studies of mechanical wave propagation in a concrete building around 1 kHz. The first experiment is devoted to the observation of the coherent backscattering enhancement, which demonstrates the presence of multiple diffractions in the late part of the wave records. An application of multiple diffraction and reverberations is proposed in a second experiment.
View Article and Find Full Text PDFPhys Rev E Stat Nonlin Soft Matter Phys
October 2005
When averaged over sources or disorder, cross correlation of diffuse fields yields the Green's function between two passive sensors. This technique is applied to elastic ultrasonic waves in an open scattering slab mimicking seismic waves in the Earth's crust. It appears that the Rayleigh wave reconstruction depends on the scattering properties of the elastic slab.
View Article and Find Full Text PDF