Publications by authors named "Ludovic Grossard"

In this paper we describe an upconversion detector in the mid infrared (around 3.5 μm). We take advantage of the PPLN ridge waveguide technology to achieve single photon detection at room temperature on a single spatial mode.

View Article and Find Full Text PDF

In the frame of sum frequency generation of a broadband infrared source, we aim to enlarge the converted bandwidth by using a pump frequency comb while keeping a high conversion efficiency. The nonlinear effects are simultaneously induced in the same nonlinear medium. In this paper, we investigate the spectral filtering effect on the temporal coherence behavior with a Mach-Zehnder interferometer using two pump lines.

View Article and Find Full Text PDF

This paper reports on the experimental implementation of an interferometer featuring sum frequency generation (SFG) processes powered by a pump spectral doublet. The aim of this configuration is to allow the use of the SFG process over an enlarged spectral domain. By analyzing the converted signal, we experimentally demonstrate a frequency spectral compression effect from the infrared input signal to the visible one converted through the SFG process.

View Article and Find Full Text PDF

This paper demonstrates the use of a nonlinear upconversion process to observe an infrared source through a telescope array detecting the interferometric signal in the visible domain. We experimentally demonstrate the possibility to retrieve information on the phase of the object spectrum of an infrared source by using a three-arm upconversion interferometer. We focus our study on the acquisition of phase information of the complex visibility by means of the phase closure technique.

View Article and Find Full Text PDF

We experimentally demonstrate strong second-harmonic-generation from a self-induced all-optical poling in germanium-doped fiber with a subnanosecond laser pump at 1064 nm. The large second-harmonic conversion efficiency allows nonlinear spectral broadening at visible wavelengths so that up to nine distinct Raman sidebands have been obtained. In this work we emphasize how the Raman scattering, induced from the pump in the IR region, can drastically affect the optical poling effect, limiting in turn second-harmonic generation.

View Article and Find Full Text PDF

It has come to the attention of the Optical Society of America that this article should not have been submitted owing to its substantial replication, without appropriate attribution, of significant elements found in the following previously published material: A. Crunteanu, D.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates how to suppress a complete Raman cascade in a holey fiber using gain competition between parametric processes.
  • Two different pump wavelengths (532 nm and 1064 nm) are employed, positioned symmetrically around the fiber’s zero dispersion wavelength (ZDW) at 790 nm.
  • The researchers quantify the energy required at each pump wavelength for total suppression of stimulated Raman scattering (SRS) and assess how sensitive this suppression is to variations in the ZDW position.
View Article and Find Full Text PDF

Second harmonic generation in an air-silica microstructured optical fiber pumped by subnanosecond pulses is used in order to initiate modulation instability processes in normal and anomalous dispersion regimes. This allows us to generate an ultra wide and flat supercontinuum (350-1750 nm), covering the entire transparency window of silica and exhibiting a singlemode transverse profile in visible range.

View Article and Find Full Text PDF