Most of the biological effects of 1,25-dihydroxyvitamin D(3) (hormone D) are mediated through the nuclear vitamin D receptor (VDR). Hormone binding induces conformational changes in VDR that enable the receptor to activate gene transcription. It is known that residues S237 and R274 form hydrogen bonds with the 1-hydroxyl group of hormone D, while residues Y143 and S278, and residues H305 and H397 form hydrogen bonds with the 3-hydroxyl and the 25-hydroxyl groups of the hormone.
View Article and Find Full Text PDFMost of the actions of 1,25-dihydroxyvitamin D(3) [1,25(OH)(2)D(3)] are mediated by binding to the Vitamin D nuclear receptor (VDR). The crystal structure of a deletion mutant (Delta165-215) of the VDR ligand-binding domain (LBD) bound to 1,25(OH)(2)D(3) indicates that amino acid residues tyrosine-143 and serine-278 form hydrogen bonding interactions with the 3-hydroxyl group of 1,25(OH)(2)D(3). Studies of VDR and three mutants (Y143F, S278A, and Y143F/S278A) did not indicate any differences in the binding affinity between the variant receptors and the wild-type receptor.
View Article and Find Full Text PDF