Publications by authors named "Ludmila Trilisenko"

The cell wall of yeast grown on presence of hexadecane as a sole carbon source undergoes structural and functional changes including the formation of specific supramolecular complexes-canals. The canals contain specific polysaccharides and enzymes that provide primary oxidization of alkanes. In addition, inorganic polyphosphate (polyP) was identified in canals.

View Article and Find Full Text PDF

Inorganic polyphosphates (polyP), according to literature data, are involved in the regulatory processes of molecular complex of the Saccharomyces cerevisiae cell wall (CW). The aim of the work was to reveal relationship between polyP, acid phosphatase Pho3p, and the major CW protein, glucanosyltransglycosylase Bgl2p, which is the main glucan-remodelling enzyme with amyloid properties. It has been shown that the yeast cells with deletion of the PHO3 gene contain more high molecular alkali-soluble polyP and are also more resistant to exposure to alkali and manganese ions compared to the wild type strain.

View Article and Find Full Text PDF

Inorganic polyphosphate (polyP) is an important factor of alkaline, heavy metal, and oxidative stress resistance in microbial cells. In yeast, polyP is synthesized by Vtc4, a subunit of the vacuole transporter chaperone complex. Here, we report reduced but reliably detectable amounts of acid-soluble and acid-insoluble polyPs in the Δ strain of , reaching 10% and 20% of the respective levels of the wild-type strain.

View Article and Find Full Text PDF

Inorganic polyphosphates (polyP) are the linear polymers of orthophosphoric acid varying in the number of phosphate residues linked by the energy-rich phosphoanhydride bonds. PolyP is an essential component in living cells. Knowledge of polyP metabolizing enzymes in eukaryotes is necessary for understanding molecular mechanisms of polyP metabolism in humans and development of new approaches for treating bone and cardiovascular diseases associated with impaired mineral phosphorus metabolism.

View Article and Find Full Text PDF

Plasma membrane integrity is a key to cell viability. Currently, the main approach to assessing plasma membrane integrity is the detection of penetration of special dyes, such as trypan blue and propidium iodide, into the cells. However, this method needs expensive equipment: a fluorescent microscope or a flow cytometer.

View Article and Find Full Text PDF

Inorganic polyphosphate (polyP) is crucial for adaptive reactions and stress response in microorganisms. A convenient model to study the role of polyP in yeast is the strain CRN/PPN1 that overexpresses polyphosphatase Ppn1 with stably decreased polyphosphate level. In this study, we combined the whole-transcriptome sequencing, fluorescence microscopy, and polyP quantification to characterize the CRN/PPN1 response to manganese and oxidative stresses.

View Article and Find Full Text PDF

Inorganic polyphosphate (polyP) is a significant regulatory and metabolic compound in yeast cells. We compared polyP content and localization, polyphosphatase activities, and transcriptional profile of polyP-related genes in industrially important methylotrophic yeasts, Hansenula polymorpha and Pichia pastoris. The increased need for phosphate, the decrease of long-chain polyP level, the accumulation of short-chain polyP, and enhanced endopolyphosphatase activity in the crude membrane fraction were observed in methanol-grown cells compared with glucose-grown cells of both species.

View Article and Find Full Text PDF

The sensitivity to cadmium (Cd(II)), an important environmental pollutant, was studied in the cells of Saccharomyces cerevisiae strains with genetically altered polyphosphate metabolism. The strains overproducing polyphosphatases PPX1 or PPN1 were more sensitive to Cd(II) than the parent strain. The half maximal inhibitory concentrations were 0.

View Article and Find Full Text PDF

The polyphosphatase PPN1 of Saccharomyces cerevisiae shows an exopolyphosphatase activity splitting phosphate from chain end and an endopolyphosphatase activity fragmenting high molecular inorganic polyphosphates into shorter polymers. We revealed the compounds switching these activities of PPN1. Phosphate release and fragmentation of high molecular polyphosphate prevailed in the presence of Co2+ and Mg2+, respectively.

View Article and Find Full Text PDF

Inorganic polyphosphate performs many regulatory functions in living cells. The yeast exopolyphosphatase PPN1 is an enzyme with multiple cellular localization and probably variable functions. The Saccharomyces cerevisiae strain with overexpressed PPN1 was constructed for large-scale production of the enzyme and for studying the effect of overproduction on polyphosphate metabolism.

View Article and Find Full Text PDF

The yeast Saccharomyces cerevisiae accumulates the high levels of inorganic polyphosphates (polyPs) performing in the cells numerous functions, including phosphate and energy storage. The effects of vacuolar membrane ATPase (V-ATPase) dysfunction were studied on polyP accumulation under short-term cultivation in the Pi-excess media after Pi starvation. The addition of bafilomycin A1, a specific inhibitor of V-ATPase, to the medium with glucose resulted in strong inhibition of the synthesis of long-chain polyP and in substantial suppression of short-chain polyP.

View Article and Find Full Text PDF

The cellobiose lipid of Cryptococcus humicola, 16-(tetra-O-acetyl-β-cellobiosyloxy)-2-hydroxyhexadecanoic acid, is a natural fungicide. Sensitivity of the cells of Saccharomyces cerevisiae to the fungicide depends on a carbon source. Cellobiose lipid concentrations inducing the leakage of potassium ions and ATP were similar for the cells grown in the medium with glucose and ethanol.

View Article and Find Full Text PDF

The cells of Saccharomyces cerevisiae accumulate inorganic polyphosphate (polyP) when reinoculated on a phosphate-containing medium after phosphorus starvation. Total polyP accumulation was similar at cultivation on both glucose and ethanol. Five separate fractions of polyP: acid-soluble fraction polyP1, salt-soluble fraction polyP2, weakly alkali-soluble fraction polyP3, alkali-soluble fraction polyP4, and polyP5, have been obtained from the cells grown on glucose and ethanol under phosphate overplus.

View Article and Find Full Text PDF