The study evaluates compatibility of stabilizers with dye doped liquid crystal (LC) scaffolds that are used in electronically dimmable materials. The photodegradation of the materials was investigated and suitable stabilizers were evaluated to slow the degradation process. Various types of benzotriazole-based stabilizers were evaluated for stabilizing the liquid crystals.
View Article and Find Full Text PDFPhotoinduced order-increasing phase transitions can occur in dye-liquid crystal mixtures when the photoproduct of the excitation of the dye molecules is more compatible with the liquid crystalline medium than the initial dye species. A detailed investigation of the photoinduced changes of the phase behavior and optical properties of mixtures of liquid crystals with naphthopyran guests upon exposure to light at 365 nm is presented here. In these guest-host systems, the nematic-to-isotropic phase transition temperature is increased upon irradiation.
View Article and Find Full Text PDFLiquid crystals are traditionally classified as thermotropic, lyotropic or polymeric, based on the stimulus that governs the organization and order of the molecular system. The most widely known and applied class of liquid crystals are a subset of thermotropic liquid crystals known as calamitic, in which adding heat can result in phase transitions from or into the nematic, cholesteric and smectic mesophases. Photoresponsive liquid-crystal materials and mixtures can undergo isothermal phase transitions if light affects the order parameter of the system within a mesophase sufficiently.
View Article and Find Full Text PDFThe third order nonlinear optical properties of a trimer branched chromophore system and its linear molecule analog are investigated. Two-photon absorption and degenerate four wave mixing measurements were carried out on both systems. An enhancement in the nonlinear optical effect is observed for the branched trimer molecule in comparison to the linear chromophore system.
View Article and Find Full Text PDFMeasurements of ultrafast fluorescence anisotropy decay in model branched dendritic molecules of different symmetry are reported. These molecules contain the fundamental branching center units of larger dendrimer macromolecules with either three (C(3))- or four (T(d), tetrahedral)-fold symmetry. The anisotropy for a tetrahedral system is found to decay on a subpicosecond time scale (880 fs).
View Article and Find Full Text PDF