Publications by authors named "Ludmila Murga"

This study develops and evaluates an open-source software (called NimbleMiner) that allows clinicians to interact with word embedding models with a goal of creating lexicons of similar terms. As a case study, the system was used to identify similar terms for patient fall history from homecare visit notes (N = 1 149 586) extracted from a large US homecare agency. Several experiments with parameters of word embedding models were conducted to identify the most time-effective and high-quality model.

View Article and Find Full Text PDF

We applied an open source natural language processing (NLP) system "NimbleMiner" to identify clinical notes with mentions of alcohol and substance abuse. NimbleMiner allows users to rapidly discover clinical vocabularies (using word embedding model) and then implement machine learning for text classification. We used a large inpatient dataset with over 50,000 intensive care unit admissions (MIMIC II).

View Article and Find Full Text PDF

NimbleMiner is a word embedding-based, language-agnostic natural language processing system for clinical text classification. Previously, NimbleMiner was applied in English and this study applied NimbleMiner on a large sample of inpatient clinical notes in Hebrew to identify instances of diabetes mellitus. The study data included 521,278 clinical notes (one admission and one discharge note per patient) for 268,664 hospital admissions to medical-surgical units of a large hospital in Israel.

View Article and Find Full Text PDF

Background: Natural language processing (NLP) of health-related data is still an expertise demanding, and resource expensive process. We created a novel, open source rapid clinical text mining system called NimbleMiner. NimbleMiner combines several machine learning techniques (word embedding models and positive only labels learning) to facilitate the process in which a human rapidly performs text mining of clinical narratives, while being aided by the machine learning components.

View Article and Find Full Text PDF