Immune-induced prostaglandin E2 (PGE2) synthesis is critical for fever and other centrally elicited disease symptoms. The production of PGE2 depends on cyclooxygenase-2 and microsomal prostaglandin E synthase-1 (mPGES-1), but the identity of the cells involved has been a matter of controversy. We generated mice expressing mPGES-1 either in cells of hematopoietic or nonhematopoietic origin.
View Article and Find Full Text PDFInflammation-induced activation of the hypothalamic-pituitary-adrenal (HPA) axis has been suggested to depend on prostaglandins, but the prostaglandin species and the prostaglandin-synthesizing enzymes that are responsible have not been fully identified. Here, we examined HPA axis activation in mice after genetic deletion or pharmacological inhibition of prostaglandin E(2)-synthesizing enzymes, including cyclooxygenase-1 (Cox-1), Cox-2, and microsomal prostaglandin E synthase-1 (mPGES-1). After immune challenge by intraperitoneal injection of lipopolysaccharide, the rapid stress hormone responses were intact after Cox-2 inhibition and unaffected by mPGES-1 deletion, whereas unselective Cox inhibition blunted these responses, implying the involvement of Cox-1.
View Article and Find Full Text PDFThere is evidence from in vitro studies that inflammatory messengers influence the release of stress hormone via direct effects on the adrenal gland; however, the mechanisms underlying these effects in the intact organism are unknown. Here we demonstrate that systemic inflammation in rats elicited by iv injection of lipopolysaccharide results in dynamic changes in the adrenal immune cell population, implying a rapid depletion of dendritic cells in the inner cortical layer and the recruitment of immature cells to the outer layers. These changes are accompanied by an induced production of IL-1beta and IL-1 receptor type 1 as well as cyclooxygenase-2 and microsomal prostaglandin E synthase-1 in these cells, implying local cytokine-mediated prostaglandin E(2) production in the adrenals, which also displayed prostaglandin E(2) receptors of subtypes 1 and 3 in the cortex and medulla.
View Article and Find Full Text PDFAm J Physiol Regul Integr Comp Physiol
May 2005
Fever is a common, centrally elicited sign of inflammatory and infectious processes and is known to be induced by the action of PGE2 on its specific receptors in the thermogenic region of the hypothalamus. In the present work, using genetically modified mice, we examined the role of the inducible terminal PGE2-synthesizing enzyme microsomal prostaglandin E synthase-1 (mPGES-1) for the generation of immune-elicited fever. Animals with a deletion of the Ptges gene, which encodes mPGES-1, or their wild-type littermates were given either a subcutaneous injection of turpentine--a model for aseptic cytokine-induced pyresis--or an intraperitoneal injection of interleukin-1beta.
View Article and Find Full Text PDFPeripheral nociceptive stimulation results in activation of neurons in the pontine parabrachial nucleus (PB) of rats. Electrophysiological studies have suggested that noxiously activated PB neurons project to the amygdala, constituting a potential pathway for emotional aspects of pain. In the present study we examined this hypothesis by combining retrograde tract tracing with Fos immunohistochemistry.
View Article and Find Full Text PDFInterleukin-1 beta (IL-1 beta) is thought to act on the brain to induce fever, neuroendocrine activation, and behavioral changes during disease through induction of prostaglandins at the blood-brain barrier (BBB). However, despite the fact that IL-1 beta induces the prostaglandin-synthesizing enzyme cyclooxygenase-2 (COX-2) in brain vascular cells, no study has established the presence of IL-1 receptor type 1 (IL-1R1) protein in these cells. Furthermore, although COX inhibitors attenuate expression of the activation marker c-Fos in the preoptic and paraventricular hypothalamus after administration of IL-1 beta or bacterial lipopolysaccharide (LPS), they do not alter c-Fos induction in other structures known to express prostaglandin receptors.
View Article and Find Full Text PDF