Publications by authors named "Ludmila Krymskaya"

The most advanced monoclonal antibodies (mAbs) and vaccines against malaria target the central repeat region or closely related sequences within the circumsporozoite protein (PfCSP). Here, using an antigen-agnostic strategy to investigate human antibody responses to whole sporozoites, we identified a class of mAbs that target a cryptic PfCSP epitope that is only exposed after cleavage and subsequent pyroglutamylation (pGlu) of the newly formed N terminus. This pGlu-CSP epitope is not targeted by current anti-PfCSP mAbs and is not included in the licensed malaria vaccines.

View Article and Find Full Text PDF

The host response against infection with commonly raises self-reactivity as a side effect, and antibody deposition in kidney has been cited as a possible cause of kidney injury during severe malaria. In contrast, animal models show that infection with the parasite confers long-term protection from lethal lupus nephritis initiated by autoantibody deposition in kidney. We have limited knowledge of the factors that make parasite infection more likely to induce kidney damage in humans, or the mechanisms underlying protection from autoimmune nephritis in animal models.

View Article and Find Full Text PDF

Artemisinin and its semisynthetic derivatives (ART) are fast acting, potent antimalarials; however, their use in malaria treatment is frequently confounded by recrudescences from bloodstream parasites that enter into and later reactivate from a dormant persister state. Here, we provide evidence that the mitochondria of dihydroartemisinin (DHA)-exposed persisters are dramatically altered and enlarged relative to the mitochondria of young, actively replicating ring forms. Restructured mitochondrial-nuclear associations and an altered metabolic state are consistent with stress from reactive oxygen species.

View Article and Find Full Text PDF

Background: The PD1/PD-L1 pathway contributes to the pathogenesis of human immunodeficiency virus (HIV)/simian immunodeficiency virus (SIV) infection, and blockade of this pathway may have potential to restore immune function and promote viral control or elimination. In this study, we combined a checkpoint inhibitor anti-PD-L1 (Avelumab) and recombinant human interleukin-15 (rhIL-15) in SIV-infected rhesus macaques (RM).

Methods: The rhIL-15 was administered as continuous infusion in 2 cycles of 10 days in the context of weekly administration of anti-PD-L1 (Avelumab) in SIV-infected RM receiving combination antiretroviral therapy (cART).

View Article and Find Full Text PDF

Targeting mutations and amplifications in the EGFR has been successful precision therapy for cancers of the lung, oral cavity and gastrointestinal track. However, a systemic immune reaction manifested by dose-limiting inflammation in the skin and gut has been a consistent adverse effect. To address the possibility that intra-tumoral immune changes contribute to the anti-cancer activity of EGFR inhibition, squamous cancers were produced by syngeneic orthografts of either EGFR null or wildtype mouse primary keratinocytes transduced with an oncogenic H-ras retrovirus.

View Article and Find Full Text PDF

The HIV-1 coreceptor CCR5 is a validated target for HIV/AIDS therapy. The apparent elimination of HIV-1 in a patient treated with an allogeneic stem cell transplant homozygous for a naturally occurring CCR5 deletion mutation (CCR5(Δ32/Δ32)) supports the concept that a single dose of HIV-resistant hematopoietic stem cells can provide disease protection. Given the low frequency of naturally occurring CCR5(Δ32/Δ32) donors, we reasoned that engineered autologous CD34(+) hematopoietic stem/progenitor cells (HSPCs) could be used for AIDS therapy.

View Article and Find Full Text PDF

Persistent STAT3 signaling contributes to malignant progression in many diverse types of human cancer. STAT3 is constitutively active in activated B-cell (ABC)-like diffuse large B-cell lymphomas (DLBCL), a class of nongerminal center derived DLBCL cells for which existing therapy is weakly effective. In this report, we provide a preclinical proof of concept that STAT3 is an effective molecular target for ABC-like DLBCL therapy.

View Article and Find Full Text PDF

Although target cell cytolysis has been widely employed to describe effector function of cells, cytolysis assays as commonly employed do not generate quantitative data. In this report we describe the development and application of a statistically supported flow cytometry-based assay to quantify cell-mediated cytolysis. The assay depends on the use of the fluorescent dye CFSE to distinguish target from effector cells, the DNA intercalating dye 7AAD to distinguish dead from live cell events, and on the establishment of a cytolysis curve that allows for the derivation of statistically robust data.

View Article and Find Full Text PDF

Two HLA-A*02-restricted epitopes have been identified within the VP1 polypeptide of a human polyomavirus, BK virus, which is associated with polyomavirus-associated nephropathy in kidney transplant patients. Immunization of transgenic mice with recombinant modified vaccinia Ankara expressing BKV VP1 (rMVA-BKV VP1) elicited functional CTL populations recognizing the sequences LLMWEAVTV (amino acids residues 108-116, BKV VP1p108) and AITEVECFL (residues 44-52, BKV VP1p44) and cross-reactive to the previously described JC virus VP1 homologs. Flow-based analyses of PBMC from a panel of thirty healthy HLA-A*02 human volunteers indicated that the majority of these subjects harbored functional CTL populations recognizing the BKV epitopes and cross-reactive with the JCV homologs.

View Article and Find Full Text PDF

A transgenic mouse model was used to identify an HLA-A*02-restricted epitope within the VP1 polypeptide of a human polyomavirus, BK virus (BKV), which is associated with polyomavirus-associated nephropathy in kidney transplant patients. Peptide stimulation of splenocytes from mice immunized with recombinant modified vaccinia virus Ankara expressing BKV VP1 resulted in expansion of cytotoxic T lymphocytes (CTLs) recognizing the sequence LLMWEAVTV corresponding to amino acid residues 108 to 116 (BKV VP1p108). These effector T-cell populations represented functional CTLs as assessed by cytotoxicity and cytokine production and were cross-reactive against antigen-presenting cells pulsed with a peptide corresponding to the previously described JC virus (JCV) VP1 homolog sequence ILMWEAVTL (JCV VP1p100) (I.

View Article and Find Full Text PDF

TCR/CD3 complex-mediated signals play critical roles in regulating CD4(+) Th cell differentiation. In this report, we have examined the in vivo role of a key TCR/CD3 complex molecule zeta-chain in regulating the differentiation of Th cells. We have studied T cells from zeta-chain-deficient mice (zetaKO mice), zeta-chain-bearing mice (zeta(+) mice), and from zetaKO mice expressing a FcRgamma chain transgene (FcRgammaTG, zetaKO mice).

View Article and Find Full Text PDF

Normal mouse T cells may express alternative TCR complexes containing the FcepsilonR gamma chain (FcRgamma) rather than the zeta homodimer that is present in conventional TCR complexes. While these T cells could play critical roles in regulating immunity, the role of alternative TCR complexes and their requirement for signaling molecules in T cell development remains unknown. We show thatexpression of an FcRgamma transgene in zeta chain-deficient mice (FcRgammaTG, zetaKO mice) reduced the percentage and number of CD4(+) T cells present in these animals, when compared to C57BL/6 mice.

View Article and Find Full Text PDF