Publications by authors named "Ludmila Batsmanova"

The effect of a colloidal solution of Cu,Zn-nanoparticles on pro-oxidative/antioxidative balance and content of photosynthetic pigments and leaf area of winter wheat plants of steppe (Acveduc) and forest-steppe (Stolichna) ecotypes was investigated in drought conditions. It has been shown that Cu,Zn-nanoparticles decreased the negative effect of drought action upon plants of steppe ecotype Acveduc. In particular, increased activity of antioxidative enzymes reduced the level of accumulation of thiobarbituric acid reactive substances (TBARS) and stabilized the content of photosynthetic pigments and increased relative water content in leaves.

View Article and Find Full Text PDF

The use of colloidal solutions of metals as micronutrients enhances plant resistance to unfavorable environmental conditions and ensures high yields of food crops. The purpose of the study was a comparative evaluation of presowing treatment with nanomolybdenum and microbiological preparation impact upon the development of adaptive responses in chickpea plants. Oxidative processes did not develop in all variants of the experiment but in variants treated with microbial preparation, and joint action of microbial and nanopreparations even declined, as evidenced by the reduction of thiobarbituric acid reactive substances in photosynthetic tissues by 15 %.

View Article and Find Full Text PDF

Nanoparticles are a known cause of oxidative stress and so induce antistress action. The latter property was the purpose of our study. The effect of two concentrations (120 and 240 mg/l) of nanoform biogenic metal (Ag, Cu, Fe, Zn, Mn) colloidal solution on antioxidant enzymes, superoxide dismutase and catalase; the level of the factor of the antioxidant state; and the content of thiobarbituric acid reactive substances (TBARSs) of soybean plant in terms of field experience were studied.

View Article and Find Full Text PDF

The content of metal elements in plant tissues of 10-day wheat seedlings after seed pre-treatment and foliar treatment with non-ionic colloidal solution of metal nanoparticles (Fe, Mn, Cu, Zn) was determined by an atomic absorption spectrometer. It was shown that metal nanoparticles due to their physical properties (nanoscale and uncharged state) were capable of penetrating rapidly into plant cells and optimizing plant metabolic processes at the early stages of growth and development.

View Article and Find Full Text PDF