We evaporate aqueous suspensions in a microchamber to explore the connection between the morphology of the nanoparticle deposits at nanometer resolutions and at micrometer and hundreds of micrometers resolutions. Repulsive or weakly attractive electrical double-layer and van der Waals surface forces render the deposition of detached particles and small aggregates at nanometer resolutions. However, strongly attractive surface forces render the dense deposition of large aggregates.
View Article and Find Full Text PDFHere, we have investigated the synergistic growth of long wormlike micelles and their transformation into disklike micelles, which occurs in three-component solutions composed of sodium lauryl ether sulfate (SLES; anionic), cocamidopropyl betaine (CAPB; zwitterionic), and dodecanoic acid (HC12; nonionic). The solution rheology is characterized in terms of zero-shear viscosities and characteristic times for micellar breaking and reptation. Furthermore, the microstructure evolution, leading to the observed rheological behavior, is revealed by cryo-transmission electron microscopy (TEM) micrographs.
View Article and Find Full Text PDFWe study the influence of a megahertz Rayleigh surface acoustic wave (SAW), propagating in a solid substrate, on the pattern deposition of a solute mass off an evaporating solution. An experimental procedure, where a film of a solution undergoes a controlled evaporation in a chamber, shows that the SAW alters the state of the pattern deposition. Increasing the power of the SAW supports an increase in the density of the deposited patterns.
View Article and Find Full Text PDFAt the critical micelle concentration (CMC), amphiphiles self-assemble into spherical micelles, typically followed by a transition at the second CMC to cylindrical micelles that are uniform in width but are polydispersed in length and have swollen ends. In this Letter, we report on a new structural path of self-assembly that is based on discoidal (coin-like), rather than spherical, geometry; the nonionic sterol ChEO10 is shown to form monodisperse equilibrium disc assemblies at the first CMC, transitioning at the second CMC into flat ribbons that (like the cylindrical micelles) have uniform width, polydispersed length, and swollen ends. Increase in ChEO10 concentration or the temperature leads to ribbon elongation, branching, and network formation.
View Article and Find Full Text PDFDysfunctional endothelium contributes to more diseases than any other tissue in the body. Small interfering RNAs (siRNAs) can help in the study and treatment of endothelial cells in vivo by durably silencing multiple genes simultaneously, but efficient siRNA delivery has so far remained challenging. Here, we show that polymeric nanoparticles made of low-molecular-weight polyamines and lipids can deliver siRNA to endothelial cells with high efficiency, thereby facilitating the simultaneous silencing of multiple endothelial genes in vivo.
View Article and Find Full Text PDFWe describe the spontaneous incorporation of amphiphilic gold nanoparticles (Au NPs) into the walls of surfactant vesicles. Au NPs were functionalized with mixed monolayers of hydrophilic (deprotonated mercaptoundecanoic acid, MUA) and hydrophobic (octadecanethiol, ODT) ligands, which are known to redistribute dynamically on the NP surface in response to changes in the local environment. When Au NPs are mixed with preformed surfactant vesicles, the hydrophobic ODT ligands on the NP surface interact favorably with the hydrophobic core of the bilayer structure and guide the incorporation of NPs into the vesicle walls.
View Article and Find Full Text PDFThe main objective of this study was to form nanoparticles of a model hydrophobic drug, celecoxib, from a volatile microemulsion stabilized by a bile salt derivative. Nanoparticles were obtained by conversion of the microemulsion nanodroplets with the dissolved drug into solid nanometric particles. The use of bile salt derivatives as the surfactants for the formation of a microemulsion enabled significantly higher loading of the drug in both the microemulsion and nanoparticles, compared with the native bile salt.
View Article and Find Full Text PDFIn this article, we provide direct evidence for 1-D micellar growth and the formation of a network structure in an aqueous system of poly(oxyethylene) cholesteryl ether (ChEO(20)) and lauryl diethanolamide (L-02) by rheometry, small-angle X-ray scattering (SAXS), and cryo-transmission electron microscopy (cryo-TEM). The ChEO(20) self-assembles into spheroid micelles above the critical micelle concentration and undergoes a 1-D microstructural transition upon the incorporation of L-02, which because of its lipophilic nature tends to be solubilized into the micellar palisade layer and reduces the micellar curvature. The elongated micelles entangle with each other, forming network structures of wormlike micelles, and the system shows viscoelastic properties, which could be described by the Maxwell model.
View Article and Find Full Text PDFThe nanostructure of a peptide amphiphile in commercial use in anti-wrinkle creams is investigated. The peptide contains a matrikine, collagen-stimulating, pentapeptide sequence. Self-assembly into giant nanotapes is observed and the internal structure was found to comprise bilayers parallel to the flat tape surfaces.
View Article and Find Full Text PDFControlling the morphological characteristics of micellar solutions is important for surfactant performance and for achieving desired properties. In this work we study how monovalent anions of the lyotropic series affect micellization, micellar transitions, and micellar growth of the cationic surfactant N-cetyl pyridinium chloride (CPyCl), with the aim of achieving a tool to methodically tune these self-assembly characteristics. For the first time, a set of ions of the Hofmeister series were studied by combining indirect (surface tension, conductivity, optical absorption, viscosity, dynamic light scattering) and direct-imaging cryogenic-transmission electron microscopy (cryo-TEM).
View Article and Find Full Text PDFThe rheology of wormlike micelles ("worms") formed by surfactants in water often follows nonmonotonic trends as functions of composition. For example, a study by Raghavan et al. (Langmuir 2002, 18, 3797) on mixtures of the anionic surfactant sodium oleate (NaOA) and the cationic surfactant octyl trimethylammonium bromide (OTAB) reported a pronounced peak in the zero-shear viscosity eta0 as a function of NaOA/OTAB ratio at a constant surfactant concentration (3 wt %).
View Article and Find Full Text PDFThis article reports on the synthesis, characterization, and binding studies of surface-functionalized, negatively charged catanionic vesicles. These studies demonstrate that the distribution of glycoconjugates in the membrane leaflet can be controlled by small alterations of the chemical structure of the conjugate. The ability to control the glycoconjugate concentration in the membrane provides a method to explore the relationship between ligand separation distance and multivalent lectin binding at the bilayer interface.
View Article and Find Full Text PDFWe demonstrate here that the formation of polymer vesicles is not the exclusive realm of amphiphilic block copolymers. The natural alternating conjugation of hydrophobic alkyl maleates and hydrophilic polyhydroxy vinyl ethers under free-radical polymerization conditions also yields polymers with sufficient backbone amphiphilicity to form vesicles. In contrast to conventional polymersomes, these polymer vesicles have thin flexible shells capable of forming ultra-small unilamellar vesicles in water as confirmed by cryogenic-transmission electron microscopy (cryo-TEM), small-angle neutron scattering (SANS), and dynamic light scattering (DLS).
View Article and Find Full Text PDFFor the past twenty years, significant progress has been made in both developing cryogenic transmission electron microscopy (cryo-TEM) technology and understanding assembled behavior of amphiphilic molecules. Cryo-TEM can provide high-resolution images of complex fluids in a near state. Samples embedded in a thin layer of vitrified solvent do not exhibit artifacts that would normally occur when using chemical fixation or staining-and-drying techniques.
View Article and Find Full Text PDF