Lipid nanoparticles (LNPs) have shown great success as drug delivery systems, especially for mRNA vaccines, as those developed during the Covid-19 pandemics. Lipid analysis is critical to monitor the formulation process and control the quality of LNPs. The present study is focused on the development and validation of a high-performance liquid chromatography - diode array detector -evaporative light scattering detector (HPLC-DAD/ELSD) based method for the simultaneous quantification of 7 lipids, illustrating the main components of LNPs: ionizable lipids, the neutral co-lipid cholesterol, phospholipids, hydrophilic polymer-lipids for colloidal stability (e.
View Article and Find Full Text PDFJ Pharm Biomed Anal
October 2021
Lipid-oligonucleotides (LON) attract great interest as supramolecular scaffolds to improve the intracellular delivery of nucleic acids. Analytical characterization of LON assemblies is critical to formulation development, understanding in-vivo performance, as well as quality control. For this study, we selected LONs featuring different modifications on both oligonucleotide (with or without a G4 prone sequence) and lipid (mono or bis-alkyl chain covalently attached to the oligonucleotide sequence).
View Article and Find Full Text PDFA green analytical chemistry strategy is described to develop a reversed-phase high-performance liquid chromatography method for amodiaquine and artesunate analysis using ethanol-based mobile phases. This method development was particularly challenging due to the basicity of amodiaquine and low UV absorption of artesunate, leading to peak asymmetry and detection issues, respectively. UV detection concern was even more challenging due to the baseline drift observed with ethanol in gradient mode.
View Article and Find Full Text PDFLipid-oligonucleotide (LONs) based bioconjugates represent an emerging class of therapeutic agents, allowing the delivery of therapeutic oligonucleotide sequences. The LON development requests accurate and efficient analytical methods. In this contribution, LON analysis methods were developed in cyclodextrin-modified capillary zone electrophoresis (CD-CZE).
View Article and Find Full Text PDFGreening analytical methods has become of great interest in the field of pharmaceutical analysis to protect both the operators' health and the environment. In this work, an innovative methodology combining Quality-by-Design (QbD) and Green Chemistry principles was followed to develop a single, green and robust RP-HPLC method for the quantitative analysis of impurities of both artesunate and amodiaquine drugs. Ethanol was selected as the best ecofriendly alternative solvent in substitution to the commonly used organic solvents such as acetonitrile and methanol.
View Article and Find Full Text PDFTwo green analytical approaches have been developed for the analysis of antimalarial fixed dose tablets of artemether and lumefantrine for quality control. The first approach consisted of investigating the qualitative performance of a low-cost handheld near-infrared spectrometer in combination with the principal component analysis as an exploratory tool to identify trends, similarities, and differences between pharmaceutical samples, before applying the data driven soft independent modeling of class analogy (DD-SIMCA) as a one-class classifier for proper drug falsification detection with 100% of both sensitivity and specificity in the studied cases. Despite its limited spectral range and low resolution, the handheld device allowed detecting falsified drugs with no active pharmaceutical ingredient and identifying specifically a pharmaceutical tablet brand name.
View Article and Find Full Text PDFToday, one of the most popular strategies in drug delivery is the encapsulation of therapeutic agents in supramolecular nanosystems formed from amphiphilic molecules. Synthetic nucleoside-lipids, composed of one nucleoside and lipidic chains, constitute promising new amphiphilic excipients under research in the field of pharmaceutical and biomedical applications. The aim of this work was to study the chromatographic behavior of these nucleoside-lipids in reversed-phase HPLC to establish appropriate chromatographic conditions for their analysis in drug delivery systems.
View Article and Find Full Text PDFThe greening of analytical methods has gained increasing interest in the field of pharmaceutical analysis to reduce environmental impacts and improve the health safety of analysts. Reversed-phase high-performance liquid chromatography (RP-HPLC) is the most widely used analytical technique involved in pharmaceutical drug development and manufacturing, such as the quality control of bulk drugs and pharmaceutical formulations, as well as the analysis of drugs in biological samples. However, RP-HPLC methods commonly use large amounts of organic solvents and generate high quantities of waste to be disposed, leading to some issues in terms of ecological impact and operator safety.
View Article and Find Full Text PDFAlthough the application of sorafenib, a small inhibitor of tyrosine protein kinases, to cancer treatments remains a worldwide option in chemotherapy, novel strategies are needed to address the low water solubility (< 5 μM), toxicity, and side effects issues of this drug. In this context, the use of nanocarriers is currently investigated in order to overcome these drawbacks. In this contribution, we report a new type of sorafenib-based nanoparticles stabilized by hybrid nucleoside-lipids.
View Article and Find Full Text PDFJ Pharm Biomed Anal
January 2018
An innovative Analytical Quality-by-Design (AQbD) methodology was followed to develop a specific and robust UHPLC method for the simultaneous separation of 16 active pharmaceutical ingredients (APIs). In the context of pharmaceutical repositioning, these molecules have been selected as good candidates for buccal per mucous (BPM) administration route. Given the structural and physico-chemical diversity of compounds, an innovative development strategy based on QbD was applied.
View Article and Find Full Text PDFAn innovative combination of green chemistry and quality by design (QbD) approach is presented through the development of an UHPLC method for the analysis of the main degradation products of dextromethorphan hydrobromide. QbD strategy was integrated to the field of green analytical chemistry to improve method understanding while assuring quality and minimizing environmental impacts, and analyst exposure. This analytical method was thoroughly evaluated by applying risk assessment and multivariate analysis tools.
View Article and Find Full Text PDFAnal Bioanal Chem
April 2015
Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous contaminants which can reach the environment and food in different ways. Because of their high toxicity, two international regulatory institutions, the US Environmental Protection Agency and the European Food Safety Authority, have classified PAHs as priority pollutants, generating an important demand for the detection and identification of PAHs. Thus, sensitive, fast, and cheap methods for the analysis of PAHs in environmental and food samples are urgently needed.
View Article and Find Full Text PDFBecause of their high toxicity, international regulatory institutions recommend monitoring specific polycyclic aromatic hydrocarbons (PAHs) in environmental and food samples. A fast, selective and sensitive method is therefore required for their quantitation in such complex samples. This article deals with the optimization, based on an experimental design strategy, of a cyclodextrin (CD) modified capillary zone electrophoresis separation method for the simultaneous separation of 19 PAHs listed as priority pollutants.
View Article and Find Full Text PDFFor the first time, the separation of 19 polycyclic aromatic hydrocarbons (PAHs) listed as priority pollutants in environmental and food samples by the United States Environmental Protection Agency (US-EPA) and the European Food Safety Authority was developed in cyclodextrin (CD)-modified capillary zone electrophoresis with laser-induced fluorescence detection (excitation wavelength: 325 nm). The use of a dual CD system, involving a mixture of one neutral CD and one anionic CD, enabled to reach unique selectivity. As solutes were separated based on their differential partitioning between the two CDs, the CD relative concentrations were investigated to optimize selectivity.
View Article and Find Full Text PDFPolycyclic aromatic hydrocarbons (PAHs) are among the most targeted contaminants by international regulatory institutions. There is thus a need for fast, selective and sensitive analytical methods to quantify these compounds at trace levels in complex samples. This article focuses on the optimization by means of an experimental design of a CE method with laser-induced fluorescence detection for the fast simultaneous separation of 8 heavy PAHs among food and environmental priority pollutants: benzo(a)pyrene, benzo(a)anthracene, chrysene, benzo(b)fluoranthene, dibenzo(a,h)anthracene, indeno(1,2,3-cd)pyrene, benzo(k)fluoranthene, and benzo(ghi)perylene.
View Article and Find Full Text PDF