Publications by authors named "Lucy R Osborne"

Background: Supravalvar aortic stenosis (SVAS) is a characteristic feature of Williams-Beuren syndrome (WBS). Its severity varies: ~20% of people with Williams-Beuren syndrome have SVAS requiring surgical intervention, whereas ~35% have no appreciable SVAS. The remaining individuals have SVAS of intermediate severity.

View Article and Find Full Text PDF

Williams-Beuren syndrome (WBS) and 7q11.23 duplication syndrome (Dup7) are rare neurodevelopmental disorders caused by deletion and duplication of a 1.5 Mb region that includes at least five genes with a known role in epigenetic regulation.

View Article and Find Full Text PDF

Williams syndrome (WS) is a relatively rare microdeletion disorder that occurs in as many as 1:7,500 individuals. WS arises due to the mispairing of low-copy DNA repetitive elements at meiosis. The deletion size is similar across most individuals with WS and leads to the loss of one copy of 25-27 genes on chromosome 7q11.

View Article and Find Full Text PDF

Copy number variation (CNV) at 7q11.23 causes distinct disorders with both contrasting and overlapping phenotypic features of some but not all of the genes encompassed by the CNV. The spectrum of cognitive disabilities, psychopathology and altered behaviours associated with 7q11.

View Article and Find Full Text PDF

Background: 7q11.23 duplication (Dup7) is one of the most frequent recurrent copy number variants (CNVs) in individuals with autism spectrum disorder (ASD), but based on gold-standard assessments, only 19% of Dup7 carriers have ASD, suggesting that additional genetic factors are necessary to manifest the ASD phenotype. To assess the contribution of additional genetic variants to the Dup7 phenotype, we conducted whole-genome sequencing analysis of 20 Dup7 carriers: nine with ASD (Dup7-ASD) and 11 without ASD (Dup7-non-ASD).

View Article and Find Full Text PDF

Williams syndrome (WS) and 7q11.23 duplication syndrome (Dup7q11.23) are neurodevelopmental disorders caused by the deletion and duplication, respectively, of ~ 25 protein-coding genes on chromosome 7q11.

View Article and Find Full Text PDF

MRI is a powerful modality to detect neuroanatomical differences that result from mutations and treatments. Knowing which genes drive these differences is important in understanding etiology, but candidate genes are often difficult to identify. We tested whether spatial gene expression data from the Allen Brain Institute can be used to inform us about genes that cause neuroanatomical differences.

View Article and Find Full Text PDF

Gestational diabetes mellitus (GDM) affects 3-14% of pregnancies, with 20-50% of these women progressing to type 2 diabetes (T2D) within 5 years. This study sought to develop a metabolomics signature to predict the transition from GDM to T2D. A prospective cohort of 1,035 women with GDM pregnancy were enrolled at 6-9 weeks postpartum (baseline) and were screened for T2D annually for 2 years.

View Article and Find Full Text PDF

Background: Williams-Beuren Syndrome (WBS) is caused by the microdeletion of approximately 25 genes on chromosome 7q11.23, and is characterized by a spectrum of cognitive and behavioural features.

Results: We generated cortical neurons from a WBS individual and unaffected (WT) control by directed differentiation of induced pluripotent stem cells (iPSCs).

View Article and Find Full Text PDF

Src is a nonreceptor protein tyrosine kinase that is expressed widely throughout the central nervous system and is involved in diverse biological functions. Mice homozygous for a spontaneous mutation in Src (Src (thl/thl) ) exhibited hypersociability and hyperactivity along with impairments in visuospatial, amygdala-dependent, and motor learning as well as an increased startle response to loud tones. The phenotype of Src (thl/thl) mice showed significant overlap with Williams-Beuren syndrome (WBS), a disorder caused by the deletion of several genes, including General Transcription Factor 2-I (GTF2I).

View Article and Find Full Text PDF

In order to describe the physical characteristics, medical complications, and natural history of classic 7q11.23 duplication syndrome [hereafter Dup7 (MIM 609757)], reciprocal duplication of the region deleted in Williams syndrome [hereafter WS (MIM 194050)], we systematically evaluated 53 individuals aged 1.25-21.

View Article and Find Full Text PDF

Epigenetic dysfunction has been implicated in a growing list of disorders that include cancer, neurodevelopmental disorders, and neurodegeneration. Williams syndrome (WS) and 7q11.23 duplication syndrome (Dup7) are rare neurodevelopmental disorders with broad phenotypic spectra caused by deletion and duplication, respectively, of a 1.

View Article and Find Full Text PDF

To begin to delineate the psychological characteristics associated with classic 7q11.23 duplication syndrome (duplication of the classic Williams syndrome region; hereafter classic Dup7), we tested 63 children with classic Dup7 aged 4-17 years. Sixteen toddlers aged 18-45 months with classic Dup7 and 12 adults identified by cascade testing also were assessed.

View Article and Find Full Text PDF

By using a genome-wide N-ethyl-N-nitrosourea (ENU)-induced dominant mutagenesis screen in mice, a founder with low bone mineral density (BMD) was identified. Mapping and sequencing revealed a T to C transition in a splice donor of the collagen alpha1 type I (Col1a1) gene, resulting in the skipping of exon 9 and a predicted 18-amino acid deletion within the N-terminal region of the triple helical domain of Col1a1. Col1a1(Jrt) /+ mice were smaller in size, had lower BMD associated with decreased bone volume/tissue volume (BV/TV) and reduced trabecular number, and furthermore exhibited mechanically weak, brittle, fracture-prone bones, a hallmark of osteogenesis imperfecta (OI).

View Article and Find Full Text PDF

Utilizing ENU mutagenesis, we identified a mutant mouse with elevated platelets. Genetic mapping localized the mutation to an interval on chromosome 19 that encodes the Jak2 tyrosine kinase. We identified a A3056T mutation resulting in a premature stop codon within exon 19 of Jak2 (Jak2(K915X)), resulting in a protein truncation and functionally inactive enzyme.

View Article and Find Full Text PDF

Genomic rearrangements involving AUTS2 (7q11.22) are associated with autism and intellectual disability (ID), although evidence for causality is limited. By combining the results of diagnostic testing of 49,684 individuals, we identified 24 microdeletions that affect at least one exon of AUTS2, as well as one translocation and one inversion each with a breakpoint within the AUTS2 locus.

View Article and Find Full Text PDF

Duplication (dup7q11.23) and deletion (Williams syndrome) of chromosomal region 7q11.23 cause neurodevelopmental disorders with contrasting anxiety phenotypes.

View Article and Find Full Text PDF

X-linked hypophosphatemic rickets (XLH) is a dominantly inherited disease characterized by renal phosphate wasting, aberrant vitamin D metabolism, and defective bone mineralization. It is known that XLH in humans and in certain mouse models is caused by inactivating mutations in PHEX/Phex (phosphate-regulating gene with homologies to endopeptidases on the X chromosome). By a genome-wide N-ethyl-N-nitrosourea (ENU)-induced mutagenesis screen in mice, we identified a dominant mouse mutation that exhibits the classic clinical manifestations of XLH, including growth retardation, skeletal abnormalities (rickets/osteomalacia), hypophosphatemia, and increased serum alkaline phosphatase (ALP) levels.

View Article and Find Full Text PDF

The ability of random mutagenesis techniques to annotate the mammalian genome can be hampered due to genetic redundancy and compensatory pathways that mask heterozygous mutations under homeostatic conditions. The objective of this study was to devise a pharmacologically sensitized screen using the chemotherapeutic drug, 5-fluorouracil (5FU), to induce cytopenia. 5FU dose was optimized in the 129/SvImJ, C57BL/6J, BALB/cJ, and C3H/HeJ strains of laboratory mice.

View Article and Find Full Text PDF

Background: Williams-Beuren Syndrome (WBS) is a neurodevelopmental disorder caused by a hemizygous deletion of a 1.5 Mb region on chromosome 7q11.23 encompassing 26 genes.

View Article and Find Full Text PDF

Inversion of the Williams syndrome (WS) region on chromosome 7q11.23 has previously been shown to occur at a higher frequency in the transmitting parents of children with WS than in the general population, suggesting that it predisposes to the WS deletion. Frohnauer et al.

View Article and Find Full Text PDF

A mouse founder with high bone mineral density and an osteopetrotic phenotype was identified in an N-ethyl-N-nitrosourea (ENU) screen. It was found to carry a dominant missense mutation in the Tcirg1 gene that encodes the a3 subunit of the vacuolar type H(+)-ATPase (V-ATPase), resulting in replacement of a highly conserved amino acid (R740S). The +/R740S mice have normal appearance, size, and weight but exhibit high bone density.

View Article and Find Full Text PDF

Objective: Hereditary spherocytosis (HS) is a heterogeneous group of spontaneously arising and inherited red blood cell disorders ranging from very mild subclinical cases to severe and life-threatening cases, with symptoms linked directly to the severity of the mutation at the molecular level. We investigated a novel mouse model in which the heterozygotes present with the diagnostic hallmarks of mild HS and surviving homozygotes phenocopy severe hemolytic HS.

Materials And Methods: We used N-ethyl-N-nitrosourea mutagenesis to generate random point mutations in the mouse genome and a dominant screen to identify mouse models of human hematopoietic disease.

View Article and Find Full Text PDF

Williams-Beuren syndrome (WBS) is a neurodevelopmental disorder caused by the hemizygous deletion of 28 genes on chromosome 7, including the general transcription factor GTF2IRD1. Mice either hemizygously (Gtf2ird1(+/-)) or homozygously (Gtf2ird1(-/-)) deleted for this transcription factor exhibit low innate anxiety, low aggression and increased social interaction, a phenotype that shares similarities to the high sociability and disinhibition seen in individuals with WBS. Here, we investigated the inhibitory effects of serotonin (5-HT) on the major output neurons of the prefrontal cortex in Gtf2ird1(-/-) mice and their wildtype (WT) siblings.

View Article and Find Full Text PDF