Publications by authors named "Lucy Gentles"

Defective DNA damage response (DDR) pathways are enabling characteristics of cancers that not only can be exploited to specifically target cancer cells but also can predict chemotherapy response. Defective Homologous Recombination Repair (HRR) function, e.g.

View Article and Find Full Text PDF

In an era when immunohistochemistry (IHC) is increasingly depended on for histological subtyping, and IHC-determined biomarker informing rapid treatment choices is on the horizon; reproducible, quantifiable techniques are required. This study aimed to compare automated IHC scoring to quantify 6 DNA damage response protein markers using a tissue microarray of 66 ovarian cancer samples. Accuracy of quantification was compared between manual H-score and computer-aided quantification using Aperio ImageScope with and without a tissue classification algorithm.

View Article and Find Full Text PDF
Article Synopsis
  • * In a study involving various cancer types, 24 cultures from patients showed that 8 cultures had HRR dysfunction (HRD), leading to greater sensitivity to rucaparib and improved survival for those receiving platinum therapy.
  • * The findings suggest that about a third of the assessed tumors exhibit HRD, indicating the potential for broader application of PARP inhibitor treatments in cancer therapy.
View Article and Find Full Text PDF

PARP inhibitors (PARPi) represent a major advance in the treatment of ovarian cancer associated with defects in homologous recombination DNA repair (HRR), primarily due to mutations in BRCA genes. Imatinib and PI3K inhibitors are reported to downregulate HRR and, in some cases, sensitise cells to PARPi. We investigated the ability of imatinib, and the PI3K inhibitors: NVP-BEZ235 and VS-5584, to downregulate HRR and sensitise paired ovarian cancer cells with mutant and reconstituted BRCA1 to the PARPi, olaparib and rucaparib.

View Article and Find Full Text PDF

NUCOLL43 is a novel ovarian clear cell carcinoma (O-CCC) cell line that arose from a primary culture of a patient's malignant ascites. The cells grow reliably in cell culture with a doubling time of approx. 45 hours and form colonies at high efficiency.

View Article and Find Full Text PDF