The development of new synthetic strategies to introduce and control chirality in inorganic nanostructures has been highly stimulated by the broad spectrum of potential applications of these exiting nanomaterials. Molybdenum disulfide is among the most investigated transition metal dichalcogenides due to its promising properties for applications that spread from optoelectronic to spintronic. Herein, we report a new two-step approach for the production of chiroptically active semiconductor 2H MoS nanosheets with chiral morphology based on the manipulation of their crystallographic structure.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
October 2024
Chirality in inorganic nanostructures has recently stimulated the attention of many researchers, both to unravel fundamental questions on the origin of chirality in inorganic and hybrid materials, as well as to introduce novel promising properties that are originated by the symmetry breaking. MoS is one of the most investigated among the large family of layered transition metal dichalcogenides. In particular, the metastable metallic 1T-MoS phase is of large interest for potential applications.
View Article and Find Full Text PDF