Publications by authors named "Lucy Copsey"

In the early 1900s, Erwin Baur established Antirrhinum majus as a model system, identifying and characterising numerous flower colour variants. This included Picturatum/Eluta, which restricts the accumulation of magenta anthocyanin pigments, forming bullseye markings on the flower face. We identified the gene underlying the Eluta locus by transposon-tagging, using an Antirrhinum line that spontaneously lost the nonsuppressive el phenotype.

View Article and Find Full Text PDF

The self-incompatibility (SI) system with the broadest taxonomic distribution in angiosperms is based on multiple S-locus F-box genes (SLFs) tightly linked to an S-RNase termed type-1. Multiple SLFs collaborate to detoxify nonself S-RNases while being unable to detoxify self S-RNases. However, it is unclear how such a system evolved, because in an ancestral system with a single SLF, many nonself S-RNases would not be detoxified, giving low cross-fertilization rates.

View Article and Find Full Text PDF

Snapdragon (Antirrhinum majus L.), a member of the Plantaginaceae family, is an important model for plant genetics and molecular studies on plant growth and development, transposon biology and self-incompatibility. Here we report a near-complete genome assembly of A.

View Article and Find Full Text PDF

Genomes of closely-related species or populations often display localized regions of enhanced relative sequence divergence, termed genomic islands. It has been proposed that these islands arise through selective sweeps and/or barriers to gene flow. Here, we genetically dissect a genomic island that controls flower color pattern differences between two subspecies of , and , and relate it to clinal variation across a natural hybrid zone.

View Article and Find Full Text PDF

Small RNAs (sRNAs) regulate genes in plants and animals. Here, we show that population-wide differences in color patterns in snapdragon flowers are caused by an inverted duplication that generates sRNAs. The complexity and size of the transcripts indicate that the duplication represents an intermediate on the pathway to microRNA evolution.

View Article and Find Full Text PDF

Heteroblasty refers to the changes in leaf shape and size (allometry) along stems. Although evolutionary changes involving heteroblasty might contribute to leaf diversity, little is known of the extent to which heteroblasty differs between species or how it might relate to other aspects of allometry or other developmental transitions. Here, we develop a computational model that can quantify differences in leaf allometry between Antirrhinum (snapdragon) species, including variation in heteroblasty.

View Article and Find Full Text PDF

The development of organs with particular shapes, like wings or flowers, depends on regional activity of transcription factors and signalling molecules. However, the mechanisms that link these molecular activities to the morphogenetic events underlying shape are poorly understood. Here we describe a combination of experimental and computational approaches that address this problem, applying them to a group of genes controlling flower shape in the Snapdragon (Antirrhinum).

View Article and Find Full Text PDF

Crosses between closely related species give two contrasting results. One result is that species hybrids may be inferior to their parents, for example, being less fertile [1]. The other is that F1 hybrids may display superior performance (heterosis), for example with increased vigour [2].

View Article and Find Full Text PDF

Understanding evolutionary change requires phenotypic differences between organisms to be placed in a genetic context. However, there are few cases where it has been possible to define an appropriate genotypic space for a range of species. Here we address this problem by defining a genetically controlled space that captures variation in shape and size between closely related species of Antirrhinum.

View Article and Find Full Text PDF

To understand how genes control floral asymmetry, we have isolated and analyzed the role of the RADIALIS (RAD) gene in Antirrhinum. We show that the RAD gene encodes a small MYB-like protein that is specifically expressed in the dorsal region of developing flowers. RAD has a single MYB-like domain that is closely related to one of the two MYB-like domains of DIV, a protein that has an antagonistic effect to RAD on floral development.

View Article and Find Full Text PDF