Publications by authors named "Lucrece Matheron"

Free polymannose-type oligosaccharides (fOS) are processed by cytosolic enzymes to generate Man5GlcNAc which is transferred to lysosomes and degraded. Lysosomal fOS import was demonstrated in vitro but is poorly characterized in part due to lack of convenient substrates. As chitooligosaccharides (COS, oligomers β1,4-linked GlcNAc) block [3H]Man5GlcNAc transport into lysosomes, we asked if COS are themselves transported and if so, can they be chemically modified to generate fluorescent substrates.

View Article and Find Full Text PDF

While low concentrations of high-density lipoprotein-cholesterol (HDL-C) are widely accepted as an independent cardiovascular risk factor, HDL-C-rising therapies largely failed, suggesting the importance of both HDL functions and individual subspecies. Indeed HDL particles are highly heterogeneous, with small, dense pre-beta-HDLs being considered highly biologically active but remaining poorly studied, largely reflecting difficulties for their purification. We developed an original experimental approach allowing the isolation of sufficient amounts of human pre-beta-HDLs and revealing the specificity of their proteomic and lipidomic profiles and biological activities.

View Article and Find Full Text PDF

Background: Cyclodipeptide oxidases (CDOs) are enzymes involved in the biosynthesis of 2,5-diketopiperazines, a class of naturally occurring compounds with a large range of pharmaceutical activities. CDOs belong to cyclodipeptide synthase (CDPS)-dependent pathways, in which they play an early role in the chemical diversification of cyclodipeptides by introducing Cα-Cβ dehydrogenations. Although the activities of more than 100 CDPSs have been determined, the activities of only a few CDOs have been characterized.

View Article and Find Full Text PDF

Background: Haptoglobin bifucosylated tetra-antennary glycan have been identified in patients with early stage hepatocellular carcinoma, but its specificity according to the presence or not of cirrhosis has never been assessed. The aims of this study were to determine if haptoglobin bifucosylated tetra-antennary glycan (1) could be a marker of HCC in patients without cirrhosis; (2) could increase the performance of standard alpha-fetoprotein (AFP) or recent blood tests for HCC detection, i.e.

View Article and Find Full Text PDF

Background: Low concentrations of high-density lipoprotein cholesterol (HDL-C) represent a well-established cardiovascular risk factor. Paradoxically, extremely high HDL-C levels are equally associated with elevated cardiovascular risk, resulting in the U-shape relationship of HDL-C with cardiovascular disease. Mechanisms underlying this association are presently unknown.

View Article and Find Full Text PDF

The accurate control of dormancy release and germination is critical for successful plantlet establishment. Investigations in cereals hypothesized a crucial role for specific MAP kinase (MPK) pathways in promoting dormancy release, although the identity of the MPK involved and the downstream events remain unclear. In this work, we characterized mutants for Arabidopsis thaliana MAP kinase 8 (MPK8).

View Article and Find Full Text PDF

Affinity photo-cross-linking coupled to mass spectrometry, using benzophenone (Bzp)-functionalized peptides, was used to study the noncovalent interactions of cell-penetrating peptides and lipid membranes. Using biomimetic lipid vesicles composed of saturated and unsaturated negatively charged lipids, DMPG (14:0), DPPG (16:0), DOPG (18:1 Δ), 18:1 ( Δ) PG, and DLoPG (18:2 Δ), allowed observation of all the classical and less common reactivities of Bzp described in the literature by direct MS analysis: C═C double bond formation on saturated fatty acids, covalent adducts formation via classical C-C bond, and Paternò-Büchi oxetane formation followed or not by fragmentation (retro-Paternò-Büchi) as well as photosensitization of unsaturated lipids leading to lipid dimers. All these reactions can occur concomitantly in a single complex biological system: a membrane-active peptide inserted within a phospholipid bilayer.

View Article and Find Full Text PDF

Cyanobacterial blooms have become a common phenomenon in eutrophic freshwater ecosystems worldwide. Microcystis is an important bloom-forming and toxin-producing genus in continental aquatic ecosystems, which poses a potential risk to Human populations as well as on aquatic organisms. Microcystis is known to produce along with various bioactive peptides, the microcystins (MCs) that have attracted more attention notably due to their high hepatotoxicity.

View Article and Find Full Text PDF

The formation of the molluscan shell nacre is regulated to a large extent by a matrix of extracellular macromolecules that are secreted by the shell-forming tissue, the mantle. This so-called 'calcifying matrix' is a complex mixture of proteins, glycoproteins and polysaccharides that is assembled and occluded within the mineral phase during the calcification process. Better molecular-level characterization of the substances that regulate nacre formation is still required.

View Article and Find Full Text PDF

Cyanobacterial blooms threaten human health as well as the population of other living organisms in the aquatic environment, particularly due to the production of natural toxic components, the cyanotoxin. So far, the most studied cyanotoxins are microcystins (MCs). In this study, the hepatic alterations at histological, proteome and transcriptome levels were evaluated in female and male medaka fish chronically exposed to 1 and 5 μg L microcystin-LR (MC-LR) and to the extract of MC-producing Microcystis aeruginosa PCC 7820 (5 μg L of equivalent MC-LR) by balneation for 28 days, aiming at enhancing our understanding of the potential reproductive toxicity of cyanotoxins in aquatic vertebrate models.

View Article and Find Full Text PDF

Sexual dimorphism describes the features that discriminate between the two sexes at various biological levels. Especially, during the reproductive phase, the liver is one of the most sexually dimorphic organs, because of different metabolic demands between the two sexes. The liver is a key organ that plays fundamental roles in various physiological processes, including digestion, energetic metabolism, xenobiotic detoxification, biosynthesis of serum proteins, and also in endocrine or immune response.

View Article and Find Full Text PDF

Outcomes of comparative evaluations of enrichment methods for phosphopeptides depend highly on the experimental protocols used, the operator, the source of the affinity matrix, and the samples analyzed. Here, we attempt such a comparative study exploring a very large synthetic library containing thousands of serine, threonine, and tyrosine phosphorylated peptides, being present in roughly equal abundance, along with their nonphosphorylated counterparts, and use an optimized protocol for enrichment by TiO2 and Ti(4+)-immobilized metal affinity chromatography (IMAC) by a single operator. Surprisingly, our data reveal that there are minimal differences between enrichment of phosphopeptides by TiO2 and Ti(4+)-IMAC when considering biochemical and biophysical parameters such as peptide length, sequence surrounding the site, hydrophobicity, and nature of the amino acid phosphorylated.

View Article and Find Full Text PDF

The hormone HGF regulates morphogenesis and regeneration of multiple organs and increased HGF signaling is strongly associated with metastatic cancer. At the cellular level, one of the distinct effects of HGF is the de-stabilization of cell-cell junctions. Several molecular mechanisms have been shown to be involved that mostly culminate at the E-cadherin adhesion complex.

View Article and Find Full Text PDF

We present a peptide library and data resource of >100,000 synthetic, unmodified peptides and their phosphorylated counterparts with known sequences and phosphorylation sites. Analysis of the library by mass spectrometry yielded a data set that we used to evaluate the merits of different search engines (Mascot and Andromeda) and fragmentation methods (beam-type collision-induced dissociation (HCD) and electron transfer dissociation (ETD)) for peptide identification. We also compared the sensitivities and accuracies of phosphorylation-site localization tools (Mascot Delta Score, PTM score and phosphoRS), and we characterized the chromatographic behavior of peptides in the library.

View Article and Find Full Text PDF
Article Synopsis
  • Cell-penetrating peptides (CPPs) can enter cells without the need for receptors, primarily through endocytosis or directly crossing the membrane.
  • A new method using matrix-assisted laser desorption/ionization time-of-flight Mass Spectrometry (MS) allows for the quantification of CPP uptake into lipid vesicles, distinguishing between uptake and mere binding.
  • Research indicates that the charge density of the membrane influences translocation, and that fluorescent dyes used in traditional methods can affect the properties and toxicity of CPPs, suggesting alternative methods may provide clearer insights into CPP uptake mechanisms.
View Article and Find Full Text PDF

This study aims at improving the MALDI-TOF detection of a phosphorylated peptide containing a cysteine residue by β-elimination of H(3)PO(4) hardly enriched by classical methods. The experimental conditions were optimized on this phosphopeptide (biot-pAdd) and its nonphosphorylated counterpart (biot-Add). The major side-reactions were H(2)S elimination on the cysteine residues and H(2)O elimination on the non phosphorylated serine residue of biot-Add.

View Article and Find Full Text PDF
Article Synopsis
  • The study focused on detecting and quantifying the phosphorylation of a specific peptide that mimics a Protein Kinase C recognition motif using MALDI-TOF MS, aiming to assess intracellular kinase/phosphatase activities.
  • Researchers identified issues with the peptide's affinity for TiO(2) and IMAC media, which hindered its extraction despite its potential as a phosphorylation probe.
  • Adjustments to the peptide's sequence improved its interaction with TiO(2), while still maintaining its biological functions, showcasing the relationship between peptide structure and its affinity to different chromatography methods.
View Article and Find Full Text PDF

Disposable plasticware such as plastic test tubes are routinely used in all proteomics laboratories. Additives in polymers are used to protect them against oxygen or ultraviolet (UV) light degradation. Hindered amine light stabilizers (HALSs) are of utmost importance in modern polyolefin (polypropylene, polyethylene) stabilization.

View Article and Find Full Text PDF