In the absence of cognitive tasks and external stimuli, strong rhythmic fluctuations with a frequency ≈ 10 Hz emerge from posterior regions of human neocortex. These posterior α-oscillations can be recorded throughout the visual cortex and are particularly strong in the calcarine sulcus, where the primary visual cortex is located. The mechanisms and anatomical pathways through which local \alpha-oscillations are coordinated however, are not fully understood.
View Article and Find Full Text PDFOur ability to hold information in mind is limited, requires a high degree of cognitive control, and is necessary for many subsequent cognitive processes. Children, in particular, are highly variable in how, trial-by-trial, they manage to recruit cognitive control in service of memory. Fronto-parietal networks, typically recruited under conditions where this cognitive control is needed, undergo protracted development.
View Article and Find Full Text PDFBeamforming has been widely adopted as a source reconstruction technique in the analysis of magnetoencephalography data. Most beamforming implementations incorporate a spatially-varying rescaling (which we term weights normalisation) to correct for the inherent depth bias in raw beamformer estimates. Here, we demonstrate that such rescaling can cause critical problems whenever analyses are performed over multiple sessions of separately beamformed data, for example when comparing effect sizes between different populations.
View Article and Find Full Text PDFSpontaneous (or resting-state) brain activity has attracted a growing body of neuroimaging research over the last decades. Whole-brain network models have proved helpful to investigate the source of slow (<0.1 Hz) correlated hemodynamic fluctuations revealed in fMRI during rest.
View Article and Find Full Text PDFIn recent years the study of the intrinsic brain dynamics in a relaxed awake state in the absence of any specific task has gained increasing attention, as spontaneous neural activity has been found to be highly structured at a large scale. This so called resting-state activity has been found to be comprised by nonrandom spatiotemporal patterns and fluctuations, and several Resting-State Networks (RSN) have been found in BOLD-fMRI as well as in MEG signal power envelope correlations. The underlying anatomical connectivity structure between areas of the brain has been identified as being a key to the observed functional network connectivity, but the mechanisms behind this are still underdetermined.
View Article and Find Full Text PDFOur understanding of the dynamics of neuronal activity in the human brain remains limited, due in part to a lack of adequate methods for reconstructing neuronal activity from noninvasive electrophysiological data. Here, we present a novel adaptive time-varying approach to source reconstruction that can be applied to magnetoencephalography (MEG) and electroencephalography (EEG) data. The method is underpinned by a Hidden Markov Model (HMM), which infers the points in time when particular states re-occur in the sensor space data.
View Article and Find Full Text PDFIn recent years, one of the most important findings in systems neuroscience has been the identification of large scale distributed brain networks. These networks support healthy brain function and are perturbed in a number of neurological disorders (e.g.
View Article and Find Full Text PDFA novel framework for analysing task-positive data in magnetoencephalography (MEG) is presented that can identify task-related networks. Techniques that combine beamforming, the Hilbert transform and temporal independent component analysis (ICA) have recently been applied to resting-state MEG data and have been shown to extract resting-state networks similar to those found in fMRI. Here we extend this approach in two ways.
View Article and Find Full Text PDFNovel neuroimaging techniques have provided unprecedented information on the structure and function of the living human brain. Multimodal fusion of data from different sensors promises to radically improve this understanding, yet optimal methods have not been developed. Here, we demonstrate a novel method for combining multichannel signals.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
October 2011
In recent years the study of resting state brain networks (RSNs) has become an important area of neuroimaging. The majority of studies have used functional magnetic resonance imaging (fMRI) to measure temporal correlation between blood-oxygenation-level-dependent (BOLD) signals from different brain areas. However, BOLD is an indirect measure related to hemodynamics, and the electrophysiological basis of connectivity between spatially separate network nodes cannot be comprehensively assessed using this technique.
View Article and Find Full Text PDF