Publications by authors named "Lucja Przysiecka"

The effectiveness and safety of hemodialysis can be hindered by protein accumulation, mechanical instability of membranes and bacterial infection during the dialytic therapy. Herein, we show that cellulose acetate membranes modified with the low-fouling polymers (namely polyvinylpyrrolidone and polyethylene glycol), followed by the in situ reduction of different densities of silver oxide(I) nanoparticles, can effectively address these limitations. These improvements comprise the enhanced resistance to the protein fouling, improved antimicrobial capabilities against S.

View Article and Find Full Text PDF

Cadmium-free and NIR fluorescent QDs are promising candidates for bio-application. Thus, we present the synthesis of ternary ZnCuInS/ZnS (ZCIS/ZnS) quantum dots (QDs) where the molar variation of Cu/Zn of the precursors was used to tune the optical and structural properties. QDs with Cu/Zn molar ratio of 2/1 passivated with ZnS exhibited the best optical properties.

View Article and Find Full Text PDF

Self-assembled lipid nanoparticles containing Gd-chelating lipids are a new type of positive magnetic resonance imaging contrast agents (MRI CAs). High molecular weight imposes reduced molecular reorientation () and corresponding longer reorientation correlation times (), finally resulting in overall high relaxivity () of such contrast agents. Therefore, we report nanoassemblies based on two types of amphiphile molecules: glyceryl monooleate (GMO) as a matrix embedded with DTPA-bis(stearylamide) and its gadolinium salt (DTPA-BSA-Gd) as a Gd-chelating lipid, stabilized by surfactant Pluronic F127 molecules.

View Article and Find Full Text PDF

Cellulose acetate membranes exhibit a potential to be applied in hemodialysis. However, their performance is limited by membrane fouling and a lack of antibacterial properties. In this research, copper oxide (I) nanoparticles were fabricated in situ into a cellulose acetate matrix in the presence of polyvinylpyrrolidone (pore-forming agent) and sulfobetaine (stabilising agent) to reduce the leakage of copper ions from nano-enhanced membranes.

View Article and Find Full Text PDF

Due to the health risks associated with the use of Gd-chelates and the promising effects of using nanoparticles as contrast agents (CAs) for MRI, Mn-based nanoparticles are considered a highly competitive alternative. The use of hybrid constructs with paramagnetic functionality of Mn-based nanoparticles is an effective approach, in particular, the use of biocompatible lipid liquid crystalline nanoparticles (LLCNPs) as a carrier of MnO nanoparticles. LLCNPs possess a unique internal structure ensuring a payload of different polarity MnO nanoparticles.

View Article and Find Full Text PDF

Understanding the interplay between nanoparticles (NPs) and cells is essential to designing more efficient nanomedicines. Previous research has shown the role of the cell cycle having impact on the efficiency of cellular uptake and accumulation of NPs. However, there is a limited investigation into the biological fate of NPs in cells that are permanently withdrawn from the cell cycle.

View Article and Find Full Text PDF

Out of BCR-ABL negative myeloproliferative neoplasm (MPNPh ) patients, 3%-14% display a concomitant monoclonal gammopathy of unknown significance (MGUS). In most cases, the diagnosis of plasma cell dyscrasia is either synchronous with that of MPNPh or occurs later on. We present a 50-year-old patient with type 2 CALR Lys385Asnfs*47 mutation positive essential thrombocythemia (ET) who developed symptomatic multiple myeloma (MM) 13 years after the diagnosis of ET during PEG-INF2α treatment.

View Article and Find Full Text PDF

The aim of our work was the synthesis of ZnO nano- and microparticles and to study the effect of shapes and sizes on cytotoxicity towards normal and cancer cells and antibacterial activity toward two kinds of bacteria. We fabricated ZnO nano- and microparticles through facile chemical and physical routes. The crystal structure, morphology, textural properties, and photoluminescent properties were characterized by powder X-ray diffraction, electron microscopies, nitrogen adsorption/desorption measurements, and photoluminescence spectroscopy.

View Article and Find Full Text PDF

Background: Lipid liquid crystalline nanoparticles (LLCNPs) emerge as a suitable system for drug and contrast agent delivery. In this regard due to their unique properties, they offer a solubility of a variety of active pharmaceutics with different polarities increasing their stability and the possibility of controlled delivery. Nevertheless, the most crucial aspect underlying the application of LLCNPs for drug or contrast agent delivery is the unequivocal assessment of their biocompatibility, including cytotoxicity, genotoxicity, and related aspects.

View Article and Find Full Text PDF

In this study, GNF@ZnO composites (gelatin nanofibers (GNF) with zinc oxide (ZnO) nanoparticles (NPs)) as a novel antibacterial agent were obtained using a wet chemistry approach. The physicochemical characterization of ZnO nanoparticles (NPs) and GNF@ZnO composites, as well as the evaluation of their antibacterial activity toward Gram-positive ( and ) and Gram-negative ( and ) bacteria were performed. ZnO NPs were synthesized using a facile sol-gel approach.

View Article and Find Full Text PDF

The development of tissue scaffolds able to provide proper and accelerated regeneration of tissue is a main task of tissue engineering. We developed a nanocomposite gel that may be used as an injectable therapeutic scaffold. The nanocomposite gel is based on biocompatible gelling agents with embedded nanoparticles (iron oxide, silver, and hydroxyapatite) providing therapeutic properties.

View Article and Find Full Text PDF

MXenes are a novel family of 2D materials, which are extensively investigated for common use in energy storage systems, nanoelectronics, and electromagnetic shielding. Although their unique physicochemical properties render their wide applicability, their cytotoxic response and safety use still remain a concern. From this perspective, it is imperative to perform an in vitro investigation of the influence of different forms of MXenes and their precursors on the human cell lines.

View Article and Find Full Text PDF

Numerous glutamine analogues have been reported as irreversible inhibitors of the glucosamine-6-phosphate (GlcN-6-P) synthase in pathogenic Candida albicans in the last 3.5 decades. Among the reported inhibitors, the most effective N-(4-methoxyfumaroyl)-l-2,3-diaminopropanoic acid (FMDP) has been extensively studied in order to develop its more active analogues.

View Article and Find Full Text PDF

Although number of stimuli-responsive drug delivery systems based on mesoporous silica nanoparticles (MSNs) have been developed, the simultaneous real-time monitoring of carrier in order to guarantee proper drug targeting still remains as a challenge. GQDs-MSNs nanocomposite nanoparticles composed of graphene quantum dots (GQDs) and MSNs are proposed as efficient doxorubicin delivery and fluorescent imaging agent, allowing to monitor intracellular localization of a carrier and drug diffusion route from the carrier. Graphene quantum dots (average diameter 3.

View Article and Find Full Text PDF

Combination therapy remains one of the most promising and intensively developed direction in cancer treatment. This study is aimed to combine and investigate the anticancer properties of silver nanoparticles (NPs) and Amanita muscaria mushroom in gel formulation. For this, hyaluronic acid was used as gel-forming agent, whereas Amanita muscaria extract was used as capping agent during silver and ultrasmall iron oxide (MAg) NPs synthesis.

View Article and Find Full Text PDF

A novel approach using a zwitterionic sulfobetaine-based surfactant for the synthesis of spherical copper oxide nanoparticles (CuO NPs) has been applied. For the first time, N-hexadecyl-N,N-dimethyl-3-ammonio-1-propanesulfonate has been used as stabilizer to control the size and morphology of CuO NPs. Several techniques, such as transmission electron microscopy (TEM), X-ray diffraction (XRD), and fluorescence spectroscopy, are used to investigate the size, structure, and optical properties of synthesized CuO nanocrystals.

View Article and Find Full Text PDF

Isoflavone synthase (IFS) is the key enzyme of isoflavonoid biosynthesis. IFS genes were identified in numerous species, although their evolutionary patterns have not yet been reconstructed. To address this issue, we performed structural and functional genomic analysis.

View Article and Find Full Text PDF

The antimicrobial properties of copper and rifampicin-loaded copper nanoparticles were investigated using four strains: Staphylococcus aureus, Escherichia coli, Bacillus pumilis and Pseudomonas fluorescens. Spherical-shaped copper nanoparticles were synthesized via green reduction method from the peppermint extract. It was found that adsorption of rifampicin on the copper nanosurface enhances its biological activity and prevents the development of resistance.

View Article and Find Full Text PDF

In this paper, iRGD peptide-mediated quantum dots (QDs) delivery was studied. In the first step, dodecanethiol-capped CuInZnxS2+x (ZCIS) QDs were prepared and subsequently transferred into water using a standard and facile ligand exchange approach involving 3-mercaptopropionic acid (MPA). ZCIS@MPA nanocrystals possess a photoluminescence quantum yield (PL QY) of 25%, a PL emission centered at ca.

View Article and Find Full Text PDF

Lupins, like other legumes, have a unique biosynthesis scheme of 5-deoxy-type flavonoids and isoflavonoids. A key enzyme in this pathway is chalcone isomerase (CHI), a member of CHI-fold protein family, encompassing subfamilies of CHI1, CHI2, CHI-like (CHIL), and fatty acid-binding (FAP) proteins. Here, two Lupinus angustifolius (narrow-leafed lupin) CHILs, LangCHIL1 and LangCHIL2, were identified and characterized using DNA fingerprinting, cytogenetic and linkage mapping, sequencing and expression profiling.

View Article and Find Full Text PDF

Efficient delivery of heterologous molecules for treatment of cells is a great challenge in modern medicine and pharmacology. Cell-penetrating peptides (CPPs) may improve efficient delivery of a wide range of macromolecular cargos, including plasmid DNA, small interfering RNA, drugs, nanoparticulate pharmaceutical carriers, and anticancer drugs. In this paper, we present the history of CPPs' discovery with special attention drawn to sequences of viral origin.

View Article and Find Full Text PDF

Background: The narrow-leafed lupin, Lupinus angustifolius L., is a grain legume species with a relatively compact genome. The species has 2n = 40 chromosomes and its genome size is 960 Mbp/1C.

View Article and Find Full Text PDF