Publications by authors named "Lucio Martinelli"

We use synchrotron grazing incidence X-ray diffraction and X-ray reflectivity to investigate with high resolution the structure of a two-dimensional single layer of tantalum sulfide grown on a Au(111) surface and its evolution during intercalation by Cs atoms and deintercalation, which decouples and recouples the two materials, respectively. The grown single layer consists of a mixture of TaS and its S-depleted version, TaS, both aligned with gold, and forming moirés where 7 (respectively 13) lattice constants of the 2D layer almost perfectly match 8 (respectively 15) substrate lattice constants. Intercalation fully decouples the system by lifting the single layer by ∼370 pm and induces an increase of its lattice parameter by 1-2 picometers.

View Article and Find Full Text PDF

Near-band-gap photoemission spectroscopy experiments were performed on p-GaN and p-InGaN/GaN photocathodes activated to negative electron affinity. The photoemission quantum yield of the InGaN samples with more than 5% of indium drops by more than 1 order of magnitude when the temperature is decreased while it remains constant for lower indium content. This drop is attributed to a freezing of photoelectron transport in p-InGaN due to electron localization in the fluctuating potential induced by the alloy disorder.

View Article and Find Full Text PDF

Heterostructures based on Prussian blue analogues (PBA) combining photo- and magneto-striction have shown a large potential for the development of light-induced magnetization switching. However, studies of the microscopic parameters that control the transfer of the mechanical stresses across the interface and their propagation in the magnetic material are still too scarce to efficiently improve the elastic coupling. Here, this coupling strength is tentatively controlled by strain engineering in heteroepitaxial PBA core-shell heterostructures involving the same Rb0.

View Article and Find Full Text PDF

Rare-earth phosphors exhibit unique luminescence polarization features originating from the anisotropic symmetry of the emitter ion's chemical environment. However, to take advantage of this peculiar property, it is necessary to control and measure the ensemble orientation of the host particles with a high degree of precision. Here, we show a methodology to obtain the photoluminescence polarization of Eu-doped LaPO nanorods assembled in an electrically modulated liquid-crystalline phase.

View Article and Find Full Text PDF

For the development of applications based on mechanochromic luminescent materials, a comprehensive study of the mechanism responsible for the emission changes is required. We report the study of a mechanochromic copper iodide cluster under hydrostatic pressure, which allows control of crystal packing via modification of the intermolecular interactions. In situ single-crystal powder X-ray diffraction analysis and emission measurements under pressure permit one to establish a direct correlation between the molecular structure and luminescence properties and, in particular, to demonstrate that cuprophilic interactions are responsible for the stimuli-responsive luminescence properties of such multinuclear coordination compounds.

View Article and Find Full Text PDF

We report on the unambiguous detection of Auger electrons by electron emission spectroscopy from a cesiated InGaN/GaN light-emitting diode under electrical injection. Electron emission spectra were measured as a function of the current injected in the device. The appearance of high energy electron peaks simultaneously with an observed drop in electroluminescence efficiency shows that hot carriers are being generated in the active region (InGaN quantum wells) by an Auger process.

View Article and Find Full Text PDF

Probing microarray assays in the presence of a hybridization mix retrieves precious information on hybridization kinetics. However, in common detection schemes, useful surface signals compete with the high supernatant background from labelled targets in the mix. A known solution consists in exciting specifically the microarray surface with evanescent fields.

View Article and Find Full Text PDF