Expansion microscopy (ExM) has significantly reformed the field of super-resolution imaging, emerging as a powerful tool for visualizing complex cellular structures with nanoscale precision. Despite its capabilities, the epitope accessibility, labeling density, and precision of individual molecule detection pose challenges. We recently developed an iterative indirect immunofluorescence (IT-IF) method to improve the epitope labeling density, improving the signal and total intensity.
View Article and Find Full Text PDFWe built a custom-made holder with a Hall-effect sensor to measure the single point magnetic flux density inside a transmission electron microscope (TEM, JEM-F200, JEOL). The measurement point is at the same place as the sample inside the TEM. We utilized information collected with the Hall-effect sensor holder to study magnetic domain wall (DW) dynamics by in-situ Lorentz microscopy.
View Article and Find Full Text PDFInvestigation of nuclear lamina architecture relies on superresolved microscopy. However, epitope accessibility, labeling density, and detection precision of individual molecules pose challenges within the molecularly crowded nucleus. We developed iterative indirect immunofluorescence (IT-IF) staining approach combined with expansion microscopy (ExM) and structured illumination microscopy to improve superresolution microscopy of subnuclear nanostructures like lamins.
View Article and Find Full Text PDFCollaborative filters perform denoising through transform-domain shrinkage of a group of similar patches extracted from an image. Existing collaborative filters of stationary correlated noise have all used simple approximations of the transform noise power spectrum adopted from methods which do not employ patch grouping and instead operate on a single patch. We note the inaccuracies of these approximations and introduce a method for the exact computation of the noise power spectrum.
View Article and Find Full Text PDFIEEE Trans Image Process
August 2014