Stem cell therapy is a promising strategy for recovering of injured cardiac tissue after acute myocardial infarction. The effects promoted by preventive physical training, beneficial for regeneration, are not yet understood on stem cell homing. In the present study, we evaluated the effect of preventive physical training on cell homing activation and associated mechanisms after acute myocardial infarction and therapy with adipose-derived stem cells in spontaneously hypertensive rats (SHR).
View Article and Find Full Text PDFBackground: Recruitment of monocytes and low-grade inflammation process are both involved in obesity and in atherosclerosis. Thus, the aim of this study was to evaluate the correlation among indicators of adiposity, monocyte subtypes, and inflammatory markers in patients with stable coronary artery disease (CAD).
Methods: This was a cross-sectional study including 97 patients with stable CAD aged >40 years.
Background: Cell homing is the mechanism by which an injury releases signaling molecules that cause recruitment, proliferation, migration and differentiation of progenitor cells. Stromal derived factor-1 (SDF-1) and its receptor CXCR4 are key molecules involved in homing and little is known about their activation in cardiopathies. Here, we assessed the homing activation status of bone marrow cells (BMC) concerning the SDF-1 and CXCR4 expression in ischemic (IHD) and valvular (VHD) heart diseases.
View Article and Find Full Text PDFAim: To examine the interference of β-blockers with the chemokine stromal cell-derived factor-1 (SDF-1) found in cell homing receptors, C-X-C chemokine receptor type 4 (CXCR-4) and CXCR-7, and regulatory proteins of homing pathways, we administered atenolol, carvedilol, metoprolol, and propranolol for 30 days using an orogastric tube to hypertensive rats.
Method: We collected blood samples before and after treatment and quantified the levels of SDF-1 with enzyme-linked immunosorbent assay (ELISA). On day 30 of treatment, the spontaneously hypertensive rats (SHR) were euthanized, and heart, liver, lung, and kidney tissues were biopsied.
Clinical trials using stem cell therapy for heart diseases have not reproduced the initial positive results obtained with animal models. This might be explained by a decreased regenerative capacity of stem cells collected from the patients. This work aimed at the simultaneous investigation of endothelial stem/progenitor cells (EPCs), mesenchymal stem/progenitor cells (MSCs), and hematopoietic stem/progenitor cells (HSCs) in sternal bone marrow samples of patients with ischemic or valvular heart disease, using flow cytometry and colony assays.
View Article and Find Full Text PDFBackground: In an attempt to increase the therapeutic potential for myocardial regeneration, there is a quest for new cell sources and types for cell therapy protocols. The pathophysiology of heart diseases may affect cellular characteristics and therapeutic results.
Methods: To study the proliferative and differentiation potential of mesenchymal stem cells (MSC), isolated from bone marrow (BM) of sternum, we made a comparative analysis between samples of patients with ischemic (IHD) or non-ischemic valvular (VHD) heart diseases.
Low angiotensin-(1-7) (Ang-(1-7)) concentration is observed in some cardiovascular diseases and exercise training seems to restore its concentration in the heart. Recently, a novel formulation of an orally active Ang-(1-7) included in hydroxy-propyl-beta-cyclodextrin (HPB-CD) was developed and chronically administered in experimental models of cardiovascular diseases. The present study examined whether chronic administration of HPB-CD/Ang-(1-7) produces beneficial cardiovascular effects in spontaneously hypertensive rats (SHR), as well as to compare the results obtained with those produced by exercise training.
View Article and Find Full Text PDFAims: Angiotensin-converting enzyme (ACE) inhibitors are used in diabetic kidney disease to reduce systemic/intra-glomerular pressure. The objective of this study was to investigate whether reducing blood pressure (BP) could modulate renal glucose transporter expression, and urinary markers of diabetic nephropathy in diabetic hypertensive rats treated with ramipril or amlodipine.
Main Methods: Diabetes was induced in spontaneously-hypertensive rats (~210 g) by streptozotocin (50mg/kg).
Background: The effects of renal denervation on cardiovascular reflexes and markers of nephropathy in diabetic-hypertensive rats have not yet been explored.
Aim: To evaluate the effects of renal denervation on nephropathy development mechanisms (blood pressure, cardiovascular autonomic changes, renal GLUT2) in diabetic-hypertensive rats. Forty-one male spontaneously hypertensive rats (SHR) ~250 g were injected with STZ or not; 30 days later, surgical renal denervation (RD) or sham procedure was performed; 15 days later, glycemia and albuminuria (ELISA) were evaluated.