This work reports the functionalization of sodium titanate nanotubes with amine groups obtained from the reaction of titanate nanotubes with [3-(2-Aminoethylamino)propyl]trimethoxysilane, NaTiNT-2NH, and 3-[2-(2-Aminoethylamino)ethylamino]propyltrimethoxysilane, NaTiNT-3NH. It was verified that the crystalline and morphological structures of NaTiNT were preserved after the functionalization, spectroscopies showed that aminosilane interacted covalently with the surface of NaTiNT, and the incorporation of the aminosilane groups on the surface of NaTiNT can be confirmed. The adsorbent matrices NaTiNT-2NH and NaTiNT-3NH were used to remove the anionic dye from remazol blue R (RB) in aqueous medium, and the highest adsorption capacity was around 365.
View Article and Find Full Text PDFThe extensive use of organic molecules (Rhodamine B and Amitriptyline) also has contributed to environmental pollution; adsorption is a relevant method for removal of these contaminants in aqueous media. In this context, the objective of this study was to modify the surface of cellulose (Cel) with phosphoric acid and sodium tripolyphosphate to obtain a biopolymer with incorporated phosphate groups (PCel). The modification was confirmed by X-ray dispersive energy spectroscopy, solid state nuclear magnetic resonance, X-ray diffraction, and thermal analysis.
View Article and Find Full Text PDFCarbohydr Polym
January 2020
A new adsorbent matrix (Cel-SiN) for the adsorption of the dye eosin yellow (EY) and the drug amitriptyline (AMI) from aqueous media has been synthesized. The Cel-SiN matrix was obtained via chemical modification of cellulose with (3-aminopropyl)trimethoxysilane. Successful modification was confirmed using Fourier transform infrared (FTIR) and C and Si solid state nuclear magnetic resonance (SSNMR) spectroscopies, thermal analysis (TG/DTG), X-ray diffraction (XRD), and elemental analysis.
View Article and Find Full Text PDFAdsorption has been explored to minimize the pollution caused by dyes. This work relates the preparation of diethylenetriamine-modified cellulose (DetaCel) by reacting phthalic anhydride-modified cellulose (PhCel) with diethylenetriamine (Deta). Materials were characterized by Elemental Analysis and results showed a degree of incorporation of 5.
View Article and Find Full Text PDFMolecules
March 2018
In the last decade, adsorption has been used to minimize the pollution caused by dyes, which represents a serious environmental problem. In this context, this work reports the preparation of phthalic anhydride-modified cellulose (PhCel), through the reaction of cellulose (Cel) with phthalic anhydride (Ph). The efficiency of the reaction was observed by elemental analysis, Fourier Transform Infrared (FTIR) spectroscopy, X-ray diffraction (XRD) and thermogravimetry/derivative thermogravimetry (TG/DTG).
View Article and Find Full Text PDF