Rationale: Recurrent pulmonary exacerbations are associated with progressive lung disease in cystic fibrosis (CF). Current definitions of an exacerbation, although not precisely defined, include new/worsening symptoms, declining lung function, and/or changing radiologic appearance. Early diagnosis of exacerbations by rapid noninvasive means should expedite therapeutic intervention, thereby minimizing lung damage.
View Article and Find Full Text PDFQuantitative proteomic studies, based on two-dimensional gel electrophoresis, are commonly used to find proteins that are differentially expressed between samples or groups of samples. These proteins are of interest as potential diagnostic or prognostic biomarkers, or as proteins associated with a trait. The complexity of proteomic data poses many challenges, so while experiments may reveal proteins that are differentially expressed, these are often not significant when subjected to rigorous statistical analysis.
View Article and Find Full Text PDFCirculating antibodies can be used to probe protein arrays of body fluids, prepared by two-dimensional gel electrophoresis, for antigenic biomarker detection. However, detected proteins, particularly low abundance antigens, often remain unidentifiable due to proteome complexity and limiting sample amounts. Using a novel enrichment approach exploiting patient antibodies for isolation of antigenic biomarkers, we demonstrate how immunoproteomic strategies can accelerate biomarker discovery.
View Article and Find Full Text PDFSMG (submucosal gland) secretions are a major component of the airway surface liquid, are associated with innate immunity in the lung, and have been reported to be altered in lung disease. Changes in lung mucosal glycosylation have been reported in CF (cystic fibrosis), which may be responsible for differential bacterial binding to glycosylated components in the lung mucosa and hence increased pre-disposition to pulmonary infection. Glycoproteomic analysis was performed on SMG secretions collected from explanted bronchial tissue of subjects with severe lung disease, with and without CF, and controls without lung disease.
View Article and Find Full Text PDF