Publications by authors named "Lucien G J Cayer"

Many foods including edible oils contain 2-monochloropropane-1,3-diol (2-MCPD), a processing-induced chemical contaminant. Cardiotoxic effects have been shown to result from oral 2-MCPD exposure in rodents, but the underlying mechanisms of action remain poorly understood. We undertook a comprehensive multi-omics approach to assess changes at the transcriptomic, proteomic, and oxylipin levels in heart tissues from male F344 rats that were exposed to 0 or 40 mg/kg BW/day of 2-MCPD in the diet for 90 days, in a regulatory compliant rodent bioassay.

View Article and Find Full Text PDF

Chloropropanols have been identified as processing-induced food contaminants that occur as by-products of the manufacturing of refined food oils and hydrolyzed vegetable protein. There has been a paucity of research on the 2-monochloropropane-1,3-diol (2-MCPD) isomer, thus forming a data gap for regulatory risk assessment. Previous studies suggest 2-MCPD causes adverse cardiotoxic, nephrotoxic, and myotoxic effects, but were inconclusive for hazard identification; thus a dose-response OECD TG-408-compliant study was conducted by Health Canada.

View Article and Find Full Text PDF

Background: Aortic valve stenosis (AVS) is the most common valvular disease in the developed world. AVS involves the progressive fibrocalcific remodeling of the aortic valve (AV), which impairs function and can ultimately lead to heart failure. Due to gaps in our understanding of the underlying mechanisms of AVS, there are no pharmacological treatments or dietary interventions known to slow AVS progression.

View Article and Find Full Text PDF

Dietary PUFA and their effects on adipose tissue have been well studied, but oxylipins, the oxygenated metabolites of PUFA, have been sparsely studied in adipose tissue. To determine the oxylipin profile and to examine their potential importance in various adipose sites, female and male rats were provided control, high linoleic acid (LA), or high LA and high α-linolenic acid (LA + ALA) diets for six weeks. Analysis of gonadal (GAT), mesenteric (MAT), perirenal (PAT), and subcutaneous adipose tissues (SAT) revealed higher numbers of oxylipins in MAT and SAT, primarily due to 20-22 carbon cytochrome P450 oxylipins, as well as metabolites of cyclooxygenase derived oxylipins.

View Article and Find Full Text PDF

Dietary EPA and DHA given together alter oxylipins in adipose tissue. To compare the separate effects of individual dietary n-3 PUFA on oxylipins in different adipose depots (gonadal, mesenteric, perirenal, subcutaneous) in males and females, rats were provided diets containing higher levels of α-linolenic acid (ALA), EPA or DHA. Each n-3 PUFA enhanced its respective oxylipins the most, while effects on other n-3 oxylipins varied.

View Article and Find Full Text PDF