Protein design and engineering are evolving at an unprecedented pace leveraging the advances in deep learning. Current models nonetheless cannot natively consider non-protein entities within the design process. Here, we introduce a deep learning approach based solely on a geometric transformer of atomic coordinates and element names that predicts protein sequences from backbone scaffolds aware of the restraints imposed by diverse molecular environments.
View Article and Find Full Text PDFProteins are essential molecular building blocks of life, responsible for most biological functions as a result of their specific molecular interactions. However, predicting their binding interfaces remains a challenge. In this study, we present a geometric transformer that acts directly on atomic coordinates labeled only with element names.
View Article and Find Full Text PDFmoleculARweb (https://molecularweb.epfl.ch) began as a website for education and outreach in chemistry and structural biology through augmented reality (AR) content that runs in the web browsers of regular devices like smartphones, tablets, and computers.
View Article and Find Full Text PDFPost-translational modifications (PTMs) within the first 17 amino acids (Nt17) of the Huntingtin protein (Htt) have been shown to inhibit the aggregation and attenuate the toxicity of mutant Htt proteins and in various models of Huntington's disease. Here, we expand on these studies by investigating the effect of methionine eight oxidation (oxM8) and its crosstalk with lysine 6 acetylation (AcK6) or threonine 3 phosphorylation (pT3) on the aggregation of mutant Httex1 (mHttex1). We show that M8 oxidation delays but does not inhibit the aggregation and has no effect on the final morphologies of mHttex1aggregates.
View Article and Find Full Text PDFDigital data storage is a growing need for our society and finding alternative solutions than those based on silicon or magnetic tapes is a challenge in the era of "big data." The recent development of polymers that can store information at the molecular level has opened up new opportunities for ultrahigh density data storage, long-term archival, anticounterfeiting systems, and molecular cryptography. However, synthetic informational polymers are so far only deciphered by tandem mass spectrometry.
View Article and Find Full Text PDF