Publications by authors named "Lucie Tumova"

The long-term storage of boar sperm presents an ongoing challenge, and the modification of the cryoprotective compounds in semen extenders is crucial for improving cryopreservation's success rate. The aim of our study was to reduce the percentage of glycerol in the extender by elimination or substitution with biocompatible, non-toxic polysaccharides. For boar semen extender improvement, we tested a novel modification with the polysaccharides dextran and pentaisomaltose in combination with unique in silico predictive modeling.

View Article and Find Full Text PDF

Sperm-zona pellucida (ZP) interaction, involving the binding of sperm surface ligands to complementary carbohydrates of ZP, is the first direct gamete contact event crucial for subsequent gamete fusion and successful fertilization in mammals. It is a complex process mediated by the coordinated engagement of multiple ZP receptors forming high-molecular-weight (HMW) protein complexes at the acrosomal region of the sperm surface. The present article aims to review the current understanding of sperm-ZP binding in the four most studied mammalian models, i.

View Article and Find Full Text PDF

Currently, considering cryopreservation of bull semen, there is no clear consensus over the comparability of cryoprotective efficacy of extenders with soybean lecithin and those based on egg yolk. The objective of this study was to prove the use of Low Density Lipoprotein (LDL) extracted from hen-egg yolk as an enhancing factor for soybean lecithin-based extenders. In total, 35 ejaculates of (seven bulls x five ejaculates per bull) were collected and cryopreserved at a commercial insemination centre.

View Article and Find Full Text PDF

Sperm capacitation, one of the key events during successful fertilization, is associated with extensive structural and functional sperm remodeling, beginning with the modification of protein composition within the sperm plasma membrane. The ubiquitin-proteasome system (UPS), a multiprotein complex responsible for protein degradation and turnover, participates in capacitation events. Previous studies showed that capacitation-induced shedding of the seminal plasma proteins such as SPINK2, AQN1, and DQH from the sperm surface is regulated by UPS.

View Article and Find Full Text PDF

Mammalian fertilization remains a poorly understood event with the vast majority of studies done in the mouse model. The purpose of this review is to revise the current knowledge about semen deposition, sperm transport, sperm capacitation, gamete interactions and early embryonic development with a focus on the porcine model as a relevant, alternative model organism to humans. The review provides a thorough overview of post-ejaculation events inside the sow's reproductive tract including comparisons with humans and implications for human fertilization and assisted reproductive therapy (ART).

View Article and Find Full Text PDF

Estrogens are steroid hormones that affect a wide range of physiological functions. The effect of estrogens on male reproductive tissues and sperm cells through specific receptors is essential for sperm development, maturation, and function. Although estrogen receptors (ERs) have been studied in several mammalian species, including humans, they have not yet been described in bull spermatozoa and reproductive tissues.

View Article and Find Full Text PDF
Article Synopsis
  • The Wnt signaling pathway is essential for embryonic development and adult tissue maintenance, but its abnormal activation is linked to several cancers, including those of the gastrointestinal and breast tissues.
  • This study discovered that monensin, an antibiotic, effectively inhibits Wnt signaling in various cell types and animal models, including zebrafish and Xenopus embryos.
  • Monensin also reduced β-catenin levels in colorectal cancer cells, leading to decreased expression of genes that promote cell growth and tumor progression in mice, suggesting its potential as an anticancer treatment for Wnt-related neoplasia.
View Article and Find Full Text PDF

Background & Aims: The Wnt signaling pathway is required for maintenance of the intestinal epithelia; blocking this pathway reduces the proliferative capacity of the intestinal stem cells. However, aberrant Wnt signaling leads to intestinal cancer. We investigated the roles of the Wnt pathway in homeostasis of the intestinal epithelium and during malignant transformation in human cells and mice.

View Article and Find Full Text PDF

Using a codon-optimized gene fragment, we report remarkable yields for extracellular domain of human NK cell receptor (NKp30ex) when produced on M9 minimal medium, even with low (2g/L) glucose concentration. The yields were identical using media containing (15)NH(4)Cl or (15)NH(4)Cl in combination with all-(13)C-d-glucose allowing to produce homogenous soluble monomeric NKp30 in several formats needed for advanced NMR studies. Our optimized protocol now allows to produce routinely 10mg batches of these NKp30ex proteins per 1L of M9 production medium in four working days.

View Article and Find Full Text PDF

Increased nuclear accumulation of β-catenin, a mediator of canonical Wnt signaling, is found in numerous tumors and is frequently associated with tumor progression and metastasis. Inhibition of Wnt/β-catenin signaling therefore is an attractive strategy for anticancer drugs. In this study, we have identified a novel small molecule inhibitor of the β-catenin signaling pathway, JW55, that functions via inhibition of the PARP domain of tankyrase 1 and tankyrase 2 (TNKS1/2), regulators of the β-catenin destruction complex.

View Article and Find Full Text PDF

We present a genetic map for Xenopus tropicalis, consisting of 2886 Simple Sequence Length Polymorphism (SSLP) markers. Using a bioinformatics-based strategy, we identified unique SSLPs within the X. tropicalis genome.

View Article and Find Full Text PDF

The Wnt family of proteins is a group of extracellular signalling molecules that regulate cell-fate decisions in developing and adult tissues. It is presumed that all 19 mammalian Wnt family members contain two types of post-translational modification: the covalent attachment of fatty acids at two distinct positions, and the N-glycosylation of multiple asparagines. We examined how these modifications contribute to the secretion, extracellular movement and signalling activity of mouse Wnt1 and Wnt3a ligands.

View Article and Find Full Text PDF

Pilot forward genetic screens in Xenopus tropicalis have isolated over 60 recessive mutations. Here we present a simple method for mapping mutations to chromosomes using gynogenesis and centromeric markers. When coupled with available genomic resources, gross mapping facilitates evaluation of candidate genes as well as higher resolution linkage studies.

View Article and Find Full Text PDF