Publications by authors named "Lucie Troubat"

Background: There is increasing evidence of shared genetic factors between psychiatric disorders and brain magnetic resonance imaging (MRI) phenotypes. However, deciphering the joint genetic architecture of these outcomes has proven to be challenging, and new approaches are needed to infer the genetic structures that may underlie those phenotypes. Multivariate analyses are a meaningful approach to reveal links between MRI phenotypes and psychiatric disorders missed by univariate approaches.

View Article and Find Full Text PDF

Since the first genome-wide association studies (GWASs), thousands of variant-trait associations have been discovered. However, comprehensively mapping the genetic determinant of complex traits through univariate testing can require prohibitive sample sizes. Multi-trait GWAS can circumvent this issue and improve statistical power by leveraging the joint genetic architecture of human phenotypes.

View Article and Find Full Text PDF

Background: Approximately 95% of samples analyzed in univariate genome-wide association studies (GWAS) are of European ancestry. This bias toward European ancestry populations in association screening also exists for other analyses and methods that are often developed and tested on European ancestry only. However, existing data in non-European populations, which are often of modest sample size, could benefit from innovative approaches as recently illustrated in the context of polygenic risk scores.

View Article and Find Full Text PDF

Since the first Genome-Wide Association Studies (GWAS), thousands of variant-trait associations have been discovered. However, the sample size required to detect additional variants using standard univariate association screening is increasingly prohibitive. Multi-trait GWAS offers a relevant alternative: it can improve statistical power and lead to new insights about gene function and the joint genetic architecture of human phenotypes.

View Article and Find Full Text PDF