In plants, the first interaction between the pollen grain and the epidermal cells of the stigma is crucial for successful reproduction. When the pollen is accepted, it germinates, producing a tube that transports the two sperm cells to the ovules for fertilization. Confocal microscopy has been used to characterize the behavior of stigmatic cells post-pollination [1], but it is time-consuming since it requires the development of a range of fluorescent marker lines.
View Article and Find Full Text PDFColorful flower patterns are key signals to attract pollinators. To produce such motifs, plants specify boundaries dividing petals into subdomains where cells develop distinctive pigmentations, shapes, and textures. While some transcription factors and biosynthetic pathways behind these characteristics are well studied, the upstream processes restricting their activities to specific petal regions remain enigmatic.
View Article and Find Full Text PDFBoth the pollen tube and hyphae of filamentous pathogens penetrate the outer layer of the host and then grow within host tissues. Early epidermal responses are decisive for the outcome of these two-cell interaction processes. We identified a single cell type, the papilla in the stigma of Arabidospis, as a tool to conduct a comprehensive comparative analysis on how an epidermal cell responds to the invasion of an unwanted pathogen or a welcome pollen tube.
View Article and Find Full Text PDFMethods Mol Biol
February 2023
In plants, the first interaction that occurs between the male gametophytes (pollen grains) and the stigmatic epidermis of the female organ is crucial for successful reproduction. The stigma consists of a dome of flask-shaped cells specialized in pollen capture. In these stigmatic cells, the cytoskeleton network (cortical microtubules and actin microfilaments) actively responds to pollen contact and undergoes dynamic remodeling required for successful pollen acceptance to occur.
View Article and Find Full Text PDFPlant epidermis are multifunctional surfaces that directly affect how plants interact with animals or microorganisms and influence their ability to harvest or protect from abiotic factors. To do this, plants rely on minuscule structures that confer remarkable properties to their outer layer. These microscopic features emerge from the hierarchical organization of epidermal cells with various shapes and dimensions combined with different elaborations of the cuticle, a protective film that covers plant surfaces.
View Article and Find Full Text PDFFollowing pollen deposition on the receptive surface of the stigma, pollen germinates a tube that carries male gametes toward the ovule where fertilization occurs. As soon as it emerges from the pollen grain, the pollen tube has to be properly guided through the pistil tissues so as to reach the ovule and ensure double fertilization. Chemical attractants, nutrients as well as receptor kinase-dependent signaling pathways have been implicated in this guidance.
View Article and Find Full Text PDFBackground: Fertilization in flowering plants depends on the early contact and acceptance of pollen grains by the receptive papilla cells of the stigma. Deciphering the specific transcriptomic response of both pollen and stigmatic cells during their interaction constitutes an important challenge to better our understanding of this cell recognition event.
Results: Here we describe a transcriptomic analysis based on single nucleotide polymorphisms (SNPs) present in two Arabidopsis thaliana accessions, one used as female and the other as male.
Successful fertilization in angiosperms depends on the proper trajectory of pollen tubes through the pistil tissues to reach the ovules. Pollen tubes first grow within the cell wall of the papilla cells, applying pressure to the cell. Mechanical forces are known to play a major role in plant cell shape by controlling the orientation of cortical microtubules (CMTs), which in turn mediate deposition of cellulose microfibrils (CMFs).
View Article and Find Full Text PDFEarly events occurring at the surface of the female organ are critical for plant reproduction, especially in species with a dry stigma. After landing on the stigmatic papilla cells, the pollen hydrates and germinates a tube, which penetrates the cell wall and grows towards the ovules to convey the male gametes to the embryo sac. In self-incompatible species within the Brassicaceae, these processes are blocked when the stigma encounters an incompatible pollen.
View Article and Find Full Text PDF