Publications by authors named "Lucie Plihalova"

Familial dysautonomia is a debilitating congenital neurodegenerative disorder with no causative therapy. It is caused by a homozygous mutation in ELP1 gene, resulting in the production of the transcript lacking exon 20. The compounds studied as potential treatments include the clinical candidate kinetin, a plant hormone from the cytokinin family.

View Article and Find Full Text PDF

Coffee is one of the most known and consumed beverages worldwide. Only three species are used in commercial coffee production, that is, L. (Arabica coffee), Pierre ex A.

View Article and Find Full Text PDF

Neurodegenerative diseases are a broad heterogeneous group affecting the nervous system. They are characterized, from a pathophysiological perspective, by the selective involvement of a subpopulation of nerve cells with a consequent clinical picture of a disease. Clinical diagnoses of neurodegenerative diseases are quite challenging and often not completely accurate because of their marked heterogeneity and frequently overlapping clinical pictures.

View Article and Find Full Text PDF

Heat stress is a frequent environmental constraint. Phytohormones can significantly affect plant thermotolerance. This study compares the effects of exogenous cytokinin meta-topolin-9-(tetrahydropyran-2-yl)purine (mT9THP) on rice (Oryza sativa) under control conditions, after acclimation by moderate temperature (A; 37 °C, 2h), heat stress (HS; 45 °C, 6h) and their combination (AHS).

View Article and Find Full Text PDF

To cope with biotic and abiotic stress conditions, land plants have evolved several levels of protection, including delicate defense mechanisms to respond to changes in the environment. The benefits of inducible defense responses can be further augmented by defense priming, which allows plants to respond to a mild stimulus faster and more robustly than plants in the naïve (non-primed) state. Priming provides a low-cost protection of agriculturally important plants in a relatively safe and effective manner.

View Article and Find Full Text PDF

The chronic exposure of skin to ultraviolet (UV) radiation causes adverse dermal reactions, such as erythema, sunburn, photoaging, and cancer, by altering several signalling pathways associated with oxidative stress, inflammation, and DNA damage. One of the possible UV light protection strategies is the use of dermal photoprotective preparations. The plant hormone kinetin (N6-furfuryladenine; KIN) exhibits antioxidant and anti-senescent effects in human cells.

View Article and Find Full Text PDF

Solubility of growth regulators is essential for their use in agriculture. Four new cytokinin salts─6-benzylaminopurine mesylate (), 6-(2-hydroxybenzylamino)purine mesylate (), 6-(3-hydroxybenzylamino)purine mesylate (), and 6-(3-methoxybenzylamino)purine mesylate ()─were synthesized, and their crystal structures were determined to clarify structural influence on water solubility. The mesylates were several orders of magnitude more water-soluble than the parent CKs.

View Article and Find Full Text PDF

Plant hormone cytokinins are perceived by a subfamily of sensor histidine kinases (HKs), which via a two-component phosphorelay cascade activate transcriptional responses in the nucleus. Subcellular localization of the receptors proposed the endoplasmic reticulum (ER) membrane as a principal cytokinin perception site, while study of cytokinin transport pointed to the plasma membrane (PM)-mediated cytokinin signalling. Here, by detailed monitoring of subcellular localizations of the fluorescently labelled natural cytokinin probe and the receptor ARABIDOPSIS HISTIDINE KINASE 4 (CRE1/AHK4) fused to GFP reporter, we show that pools of the ER-located cytokinin receptors can enter the secretory pathway and reach the PM in cells of the root apical meristem, and the cell plate of dividing meristematic cells.

View Article and Find Full Text PDF

Cytokinins are plant hormones with biological functions ranging from coordination of plant growth to the regulation of biotic and abiotic stress-related responses and senescence. The components of the plant immune system can learn from past elicitations by microbial pathogens and herbivores and adapt to new threats. It is known that plants can enter the primed state of enhanced defense induced by either natural or synthetic compounds.

View Article and Find Full Text PDF

Cytokinins and their sugar or non-sugar conjugates are very active growth-promoting factors in plants, although they occur at very low concentrations. These compounds have been identified in numerous plant species. This review predominantly focuses on 9-substituted adenine-based cytokinin conjugates, both artificial and endogenous, sugar and non-sugar, and their roles in plants.

View Article and Find Full Text PDF

Rho-associated serine/threonine kinases (ROCKs) are principal regulators of the actin cytoskeleton that regulate the contractility, shape, motility, and invasion of cells. We explored the relationships between structure and anti-ROCK2 activity in a group of purine derivatives substituted at the C6 atom by piperidin-1-yl or azepan-1-yl groups. Structure-activity relationship (SAR) analyses suggested that anti-ROCK activity is retained, and may be further increased, by substitution of the parent compounds at the C2 atom or by expansion of the C6 side chain.

View Article and Find Full Text PDF

Cytokinins (CKs) and their metabolites and derivatives are essential for cell division, plant growth regulation and development. They are typically found at minute concentrations in plant tissues containing very complicated biological matrices. Therefore, defined standards labelled with stable isotopes are required for precise metabolic profiling and quantification of CKs, as well as elucidation of CK biosynthesis in various plant species.

View Article and Find Full Text PDF

Cytokinins modulate a number of important developmental processes, including the last phase of leaf development, known as senescence, which is associated with chlorophyll breakdown, photosynthetic apparatus disintegration and oxidative damage. There is ample evidence that cytokinins can slow down all these senescence-accompanying changes. Here, we review relationships between the various mechanisms of action of these regulatory molecules.

View Article and Find Full Text PDF

Silene latifolia serves as a model species to study dioecy, the evolution of sex chromosomes, dosage compensation and sex-determination systems in plants. Currently, no protocol for genetic transformation is available for this species, mainly because S. latifolia is considered recalcitrant to in vitro regeneration and infection with Agrobacterium tumefaciens.

View Article and Find Full Text PDF

Eleven 6-furfurylaminopurine (kinetin, Kin) derivatives were synthesized to obtain biologically active compounds. The prepared compounds were characterized using H NMR, mass spectrometry combined with HPLC purity determination and elemental C, H, N analyses. The biological activity of new derivatives was tested on plant cells and tissues in cytokinin bioassays, such as tobacco callus, detached wheat leaf chlorophyll retention bioassay and Amaranthus bioassay.

View Article and Find Full Text PDF

Isoprenoid cytokinins play a number of crucial roles in the regulation of plant growth and development. To study cytokinin receptor properties in plants, we designed and prepared fluorescent derivatives of 6-[(3-methylbut-2-en-1-yl)amino]purine (N-isopentenyladenine, iP) with several fluorescent labels attached to the C2 or N9 atom of the purine moiety via a 2- or 6-carbon linker. The fluorescent labels included dansyl (DS), fluorescein (FC), 7-nitrobenzofurazan (NBD), rhodamine B (RhoB), coumarin (Cou), 7-(diethylamino)coumarin (DEAC) and cyanine 5 dye (Cy5).

View Article and Find Full Text PDF

Clonal propagation plays a critical integral role in the growth and success of a global multi-billion dollar horticulture industry through a constant supply of healthy stock plants. The supply chain depends on continuously improving the micropropagation process, thus, understanding the physiology of in vitro plants remains a core component. We evaluated the influence of exogenously applied cytokinins (CKs, N-benzyladenine = BA, isopentenyladenine = iP, meta-topolin = mT, 6-(3-hydroxybenzylamino)-9-(tetrahydropyran-2-yl)purine = mTTHP) in Murashige and Skoog (MS)-supplemented media on organogenic response and accumulation of endogenous CK and indole-3-acetic acid (IAA) metabolites.

View Article and Find Full Text PDF

Cytokinins are plant hormones with biological functions ranging from coordination of plant growth and development to the regulation of senescence. A series of 2-chloro-N(6)-(halogenobenzylamino)purine ribosides was prepared and tested for cytokinin activity in detached wheat leaf senescence, tobacco callus and Amaranthus bioassays. The synthetic compounds showed significant activity, especially in delaying senescence in detached wheat leaves.

View Article and Find Full Text PDF

Cytokinins represent an important group of plant growth regulators that can modulate several biotechnological processes owing to their ability to influence almost all stages of plant development and growth. In addition, the use of purine based cytokinins with aromatic substituent in C6 position of the purine moiety in tissue culture techniques is currently experiencing a surge in interest, made possible by the ongoing systematic synthesis and study of these compounds. This review article outlines progress in the synthesis of aromatic cytokinins, the in vitro and in vivo effects of these substances and insights gleaned from their synthesis.

View Article and Find Full Text PDF