In mesenchymal cell motility, several migration patterns have been observed, including directional, exploratory and stationary. Two key members of the Rho-family of GTPases, Rac and Rho, along with an adaptor protein called paxillin, have been particularly implicated in the formation of such migration patterns and in regulating adhesion dynamics. Together, they form a key regulatory network that involves the mutual inhibition exerted by Rac and Rho on each other and the promotion of Rac activation by phosphorylated paxillin.
View Article and Find Full Text PDFMesenchymal cell motility is mainly regulated by two members of the Rho-family of GTPases, called Rac and Rho. The mutual inhibition exerted by these two proteins on each other's activation and the promotion of Rac activation by an adaptor protein called paxillin have been implicated in driving cellular polarization comprised of front (high active Rac) and back (high active Rho) during cell migration. Mathematical modeling of this regulatory network has previously shown that bistability is responsible for generating a spatiotemporal pattern underscoring cellular polarity called wave-pinning when diffusion is included.
View Article and Find Full Text PDF