Publications by authors named "Lucie Picchio"

Steinert disease, or myotonic dystrophy type 1 (DM1), is a multisystemic disorder caused by toxic noncoding CUG repeat transcripts, leading to altered levels of two RNA binding factors, MBNL1 and CELF1. The contribution of CELF1 to DM1 phenotypes is controversial. Here, we show that the CELF1 family member, Bru3, contributes to pathogenic muscle defects observed in a model of DM1.

View Article and Find Full Text PDF

Myotonic dystrophy type 1 (DM1) is a multisystemic RNA-dominant disorder characterized by myotonia and muscle degeneration. In DM1 patients, the mutant DMPK transcripts containing expanded CUG repeats form nuclear foci and sequester the Muscleblind-like 1 splicing factor, resulting in mis-splicing of its targets. However, several pathological defects observed in DM1 and their link with disease progression remain poorly understood.

View Article and Find Full Text PDF

Caloric restriction (CR) extends healthy lifespan in many organisms. DBA/2 mice, unlike C57BL/6 mice, are reported to be unresponsive to CR. To investigate potential differences underlying the CR response in male DBA/2 and C57BL/6 mice, we examined several metabolic parameters following acute (1-5 weeks) 30% CR.

View Article and Find Full Text PDF

The recent demonstration that, throughout evolution, many molecular mechanisms have been highly conserved is fundamental to the advancement of our knowledge on muscle development and regeneration. Research has provided new insights into genetic cascades governing early steps of embryonic myogenesis and the regeneration of adult muscle in normal and pathological conditions, thus revealing significant similarity of both processes. Here we provide a current view on genetic mechanisms underlying muscle regeneration with a special focus on regeneration processes that take place in diseased and aging human muscle.

View Article and Find Full Text PDF