Sustain Energy Fuels
October 2023
Perovskite solar cells have shown considerable developments in the last decade, and commercial applications are drawing closer. In this article, we present a techno-economic study of perovskite PV technologies. We compare published data on manufacturing costs of single-junction perovskite modules and find that they are dependent on the module design (rigid or flexible) and vary from 10 to almost 100 € per m.
View Article and Find Full Text PDFJ Phys Chem C Nanomater Interfaces
August 2022
Inorganic-Organic lead halide materials have been recognized as potential high-energy X-ray detectors because of their high quantum efficiencies and radiation hardness. Surprisingly little is known about whether the same is true for extreme-ultraviolet (XUV) radiation, despite applications in nuclear fusion research and astrophysics. We used a table-top high-harmonic generation setup in the XUV range between 20 and 45 eV to photoexcite methylammonium lead bromide (MAPbBr) and measure its scintillation properties.
View Article and Find Full Text PDFHalide alloying in metal halide perovskites is a useful tool for optoelectronic applications requiring a specific bandgap. However, mixed-halide perovskites show ion migration in the perovskite layer, leading to phase segregation and reducing the long-term stability of the devices. Here, we study the ion migration process in methylammonium-based mixed-halide perovskites with varying ratios of bromide to iodide.
View Article and Find Full Text PDFIon migration in perovskite layers can significantly reduce the long-term stability of the devices. While perovskite composition engineering has proven an interesting tool to mitigate ion migration, many optoelectronic devices require a specific bandgap and thus require a specific perovskite composition. Here, we look at the effect of grain size to mitigate ion migration.
View Article and Find Full Text PDFThe bandgap tunability of mixed-halide perovskites makes them promising candidates for light-emitting diodes and tandem solar cells. However, illuminating mixed-halide perovskites results in the formation of segregated phases enriched in a single halide. This segregation occurs through ion migration, which is also observed in single-halide compositions, and whose control is thus essential to enhance the lifetime and stability.
View Article and Find Full Text PDFSolar cells based on metal halide perovskites often show excellent efficiency but poor stability. This degradation of perovskite devices has been associated with the migration of mobile ions. MAPbBr perovskite materials are significantly more stable under ambient conditions than MAPbI perovskite materials.
View Article and Find Full Text PDFThere has been an ongoing effort to overcome the limitations associated with the stability of hybrid organic-inorganic perovskite solar cells by using different organic agents as additives to the perovskite formulations. The functionality of organic additives has been predominantly limited to exploiting hydrogen-bonding interactions, while the relevant atomic-level binding modes remain elusive. Herein, we introduce a bifunctional supramolecular modulator, 1,2,4,5-tetrafluoro-3,6-diiodobenzene, which interacts with the surface of the triple-cation double-halide perovskite material via halogen bonding.
View Article and Find Full Text PDF