Publications by authors named "Lucie Malosse"

Styrene butadiene rubber is one of the main constituents of tire tread. During tire life, the tread material undergoes different stresses that impact its structure and chemical composition. Wear particles are then released into the environment as weathered material.

View Article and Find Full Text PDF

Roadway particles (RP) that can be collected with on-vehicle system, consist of a mixture of Tire and road wear particles (TRWP) with other traffic-derived particles (exhaust or non-exhaust) and/or biogenic compounds and represent a significant source of xenobiotics, susceptible to reach the different environmental compartments. The study of the RP fate is thus a major challenge to tackle in order to understand their degradation and impact. They offer a variety of carbon sources potentially usable by microorganisms, ranging from the tire-derived plasticizers, vulcanizing agents, protective agents and their transformation products, to other traffic, road and environmental-derived contaminants.

View Article and Find Full Text PDF

Tire and road wear particles (TRWP) are polymer-based microparticles that are emitted into the environment during tire usage. Growing efforts are currently being made to quantify these emissions, characterize the leachates and assess their environmental impact. This study aimed to investigate the effect of aging on TRWP composition.

View Article and Find Full Text PDF

The multiplication of terrorist actions in the recent events is alarming and the detection of chemical warfare agents (CWAs) has become one of the highest research priorities in the fields of security and public health. The biomimetic properties of molecularly imprinted polymers (MIPs) render them attractive for molecular recognition as well as sensing purposes. The degradation products of easily hydrolysable organophosphorus nerve agents such as pinacolyl methylphosphonate (PMP), a hydrolysis by-product of soman, are often used as templates in MIP synthesis.

View Article and Find Full Text PDF

The durability of cement-based materials with respect to exterior aggressions is one of the current priorities in civil engineering. Depending on their use, the cement-based materials can be exposed to different types of aggressive environments. For instance, damages to concrete structures in contact with a saline environment (sea water on bridges, deicing salts on roads, etc.

View Article and Find Full Text PDF