Publications by authors named "Lucie Korecka"

Spontaneous tumor regression is a recognized phenomenon across various cancer types. Recent research emphasizes the alterations in autoantibodies against carbonic anhydrase I (CA I) (anti-CA I) levels as potential prognostic markers for various malignancies. Particularly, autoantibodies targeting CA I and II appear to induce cellular damage by inhibiting their respective protein's catalytic functions.

View Article and Find Full Text PDF

Hyaluronic acid is an excellent biocompatible material for applications. Its ability to bind CD44, a cell receptor involved in numerous biological processes, predetermines HA-based nanomaterials as unique carrier for therapeutic and theranostic applications. Although numerous methods for the synthesis of hyaluronic acid nanoparticles (HANPs) are available today, their low reproducibility and wide size distribution hinder the precise assessment of the effect on the organism.

View Article and Find Full Text PDF

Popularity of hyaluronan (HA) in the cosmetics and pharmaceutical industries, led to the investigation and development of new HA-based materials, with enzymes playing a key role. Beta-D-glucuronidases catalyze the hydrolysis of a beta-D-glucuronic acid residue from the non-reducing end of various substrates. However, lack of specificity towards HA for most beta-D-glucuronidases, in addition to the high cost and low purity of those active on HA, have prevented their widespread application.

View Article and Find Full Text PDF

Hyaluronic acid (HA) has a special position among glycosaminoglycans. As a major component of the extracellular matrix (ECM). This simple, unbranched polysaccharide is involved in the regulation of various biological cell processes, whether under physiological conditions or in cases of cell damage.

View Article and Find Full Text PDF

Purpose: Therapeutic thorax irradiation as an intervention in lung cancer has its limitations due to toxic effects leading to pneumonitis and/or pulmonary fibrosis. It has already been confirmed that hyaluronic acid (HA), an extracellular matrix glycosaminoglycan, is involved in inflammation disorders and wound healing in lung tissue. We examined the effects after gamma irradiation of hyaluronic acid nanoparticles (HANPs) applied into lung prior to that irradiation in a dose causing radiation-induced pulmonary injuries (RIPI).

View Article and Find Full Text PDF

A novel enzyme-free electrochemical immunosensor was developed for highly sensitive detection and quantification of human epididymis protein 4 (HE4) in human serum. For the first time, core/shell CdSe/ZnS quantum dots were conjugated with anti-HE4 IgG antibodies for subsequent sandwich-type immunosensing with superparamagnetic microparticles functionalized with anti-HE4 IgG antibodies, which allow rapid and efficient HE4 capture from the sample. Electrochemical detection of anti-HE4 IgG - HE4 - anti-HE4 IgG immunocomplex was performed by recording the current response of Cd(II) ions, released from dissolved quantum dots at screen-printed carbon electrode (SPCE), modified with mercury or bismuth film.

View Article and Find Full Text PDF

Cancer is a widespread disease characterized by high mortality. To improve the survival rate or facilitate effective therapy, accurate and reliable diagnosis at an early stage is needed. For this reason, there is a continuous push to develop sensitive methods which can be used in cancer diagnosis.

View Article and Find Full Text PDF

Monodisperse poly(glycidyl methacrylate) (PGMA) nanospheres were obtained by emulsifier-free emulsion polymerization and characterized by physicochemical methods. The effects of various reaction parameters on the particle properties were investigated. The particle size was controlled in the range of 350-420 nm.

View Article and Find Full Text PDF

Screen-printed platinum electrodes as transducer and magnetic beads as solid phase were combined to develop a particle-based electrochemical immunosensor for monitoring the serious food allergen ovalbumin. The standard arrangement of enzyme-linked immunosorbent assay became the basis for designing the immunosensor. A sandwich-type immunocomplex was formed between magnetic particles functionalized with specific anti-ovalbumin immunoglobulin G and captured ovalbumin molecules, and secondary anti-ovalbumin antibodies conjugated with the enzyme horseradish peroxidase were subsequently added as label tag.

View Article and Find Full Text PDF

Iron oxide based particles functionalized by bioactive molecules have been utilized extensively in biotechnology and biomedicine. Despite their already proven advantages, instability under changing reaction conditions, non-specific sorption of biomolecules on the particles' surfaces, and iron oxide leakage from the naked particles can greatly limit their application. As confirmed many times, surface treatment with an appropriate stabilizer helps to minimize these disadvantages.

View Article and Find Full Text PDF

Hyaluronic acid (HA) is known to serve as a dynamic mediator intervening in many physiological functions. Its specific effect has been repeatedly confirmed to be strongly influenced by the molecular size of hyaluronan fragments. However common technological approaches of HA fragments production have their limitations.

View Article and Find Full Text PDF

Magnetic macroporous PGMA and PHEMA microspheres containing carboxyl groups are synthesized by multi-step swelling and polymerization followed by precipitation of iron oxide inside the pores. The microspheres are characterized by SEM, IR spectroscopy, AAS, and zeta-potential measurements. Their functional groups enable bioactive ligands of various sizes and chemical structures to couple covalently.

View Article and Find Full Text PDF

We report an efficient and streamlined way to improve the analysis and identification of peptides and proteins in complex mixtures of soluble proteins, cell lysates, etc. By using the shotgun proteomics methodology combined with bioaffinity purification we can remove or minimize the interference contamination of a complex tryptic digest and so avoid the time-consuming separation steps before the final MS analysis. We have proved that by means of enzymatic fragmentation (endoproteinases with Arg-C or/and Lys-C specificity) connected with the isolation of specific peptides we can obtain a simplified peptide mixture for easier identification of the entire protein.

View Article and Find Full Text PDF

The newly developed immobilized enzyme reactors (IMERs) with proteolytic enzymes chymotrypsin, trypsin or papain were used for specific fragmentation of high molecular-mass and heterogeneous glycoproteins immunoglobulin G (IgG) and crystallizable fragment of IgG (Fc). The efficiency of splitting or digestion were controlled by RP-HPLC. The specificity of digestion by trypsin reactor was controlled by MS.

View Article and Find Full Text PDF

In this work, a simple isocratic reversed-phase HPLC method for determination of alpha-tocopherol in human erythrocytes has been developed and validated. After separation of plasma the erythrocytes were washed three times with 0.9% sodium chloride containing 0.

View Article and Find Full Text PDF