Bioorg Med Chem Lett
January 2008
Structural analyses of the protein-tyrosine phosphatase 1B (PTP1B) active site and inhibitor complexes have aided in optimization of a peptide inhibitor containing the novel (S)-isothiazolidinone (IZD) phosphonate mimetic. Potency and permeability were simultaneously improved by replacing the polar peptidic backbone of the inhibitor with nonpeptidic moieties. The C-terminal primary amide was replaced with a benzimidazole ring, which hydrogen bonds to the carboxylate of Asp(48), and the N terminus of the peptide was replaced with an aryl sulfonamide, which hydrogen bonds to Asp(48) and the backbone NH of Arg(47) via a water molecule.
View Article and Find Full Text PDFCrystal structures of protein-tyrosine phosphatase 1B in complex with compounds bearing a novel isothiazolidinone (IZD) heterocyclic phosphonate mimetic reveal that the heterocycle is highly complementary to the catalytic pocket of the protein. The heterocycle participates in an extensive network of hydrogen bonds with the backbone of the phosphate-binding loop, Phe(182) of the flap, and the side chain of Arg(221). When substituted with a phenol, the small inhibitor induces the closed conformation of the protein and displaces all waters in the catalytic pocket.
View Article and Find Full Text PDFPotent nonpeptidic benzimidazole sulfonamide inhibitors of protein tyrosine phosphatase 1B (PTP1B) were derived from the optimization of a tripeptide containing the novel (S)-isothiazolidinone ((S)-IZD) phosphotyrosine (pTyr) mimetic. An X-ray cocrystal structure of inhibitor 46/PTP1B at 1.8 A resolution demonstrated that the benzimidazole sulfonamides form a bidentate H bond to Asp48 as designed, although the aryl group of the sulfonamide unexpectedly interacts intramolecularly in a pi-stacking manner with the benzimidazole.
View Article and Find Full Text PDFThe structure-based design and discovery of the isothiazolidinone (IZD) heterocycle as a mimic of phosphotyrosine (pTyr) has led to the identification of novel IZD-containing inhibitors of protein tyrosine phosphatase 1B (PTP1B). The structure-activity relationships (SARs) of peptidic IZD-containing inhibitors of PTP1B are described along with a novel synthesis of the aryl-IZD fragments via a Suzuki coupling. The SAR revealed the saturated IZD heterocycle (42) is the most potent heterocyclic pTyr mimetic compared to the unsaturated IZD (25), the thiadiazolidinone (TDZ) (38), and the regioisomeric unsaturated IZD (31).
View Article and Find Full Text PDFStructure-based design led to the discovery of novel (S)-isothiazolidinone ((S)-IZD) heterocyclic phosphotyrosine (pTyr) mimetics that when incorporated into dipeptides are exceptionally potent, competitive, and reversible inhibitors of protein tyrosine phosphatase 1B (PTP1B). The crystal structure of PTP1B in complex with our most potent inhibitor 12 revealed that the (S)-IZD heterocycle interacts extensively with the phosphate binding loop precisely as designed in silico. Our data provide strong evidence that the (S)-IZD is the most potent pTyr mimetic reported to date.
View Article and Find Full Text PDF